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• CIRA’s	OVERCAST	research	(sponsored	
by	U.S.	Navy	Office	of	Naval	Research)
• Aims	to	develop	an	advanced	global	

3D	cloud	structure	analysis	based	on	
current	satellite	remote	sensing	
capabilities

• 3D	Cloud	Nowcasting	is	a	key	milestone	
for	OVERCAST	research	

• For	DoD	operations,	having	accurate	
cloud	locations	is	important	for	aircraft	
hazards	&	visibility

• Mission	success	for	Intelligence,	
Surveillance,	and	Reconnaissance	(ISR)	
operations	is	particularly	vulnerable	to	
cloud-free-line-of-sight	(CFLOS)	
requirements	to	surface	targets
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• Advection	Methods
• Air	Force	Advect	Cloud	Model	–	advects	cloud	moisture	parameter	(Storch	and	McDonald,	

2001)
• Multi-sensor	Advection	Diffusion	nowcast	(MADCast)	–	WRF	model	advection/diffusion	

((Jiménez	et	al.	2022)
• CIRA-Cast	–	cloud	grouping	based	on	properties	with	forward	advection	(Miller	et	al.	2018)

• Optical	Flow	Nowcasting
• Radar	Nowcasting	of	Precipitation	and	Winds	–	Radar-based	optical	flow	nowcasting	

(Bechini	and	Chandrasekar	2017)
• Cloud	Nowcasting	involving	Optical	Flow	–	2D	Piecewise	optical	flow	field	(Kellerhals	et	al.	

2022)
• Machine	Learning	–	Convolutional	Neural	Networks

• 2d	Cloud	Nowcasting	using	Neural	Networks	(Berthomier	et	al.	2020)	and	(Kellerhals	et	al.	
2022)

• NWP	Cloud	Forecast	Corrections	–	(Nguyen	et	al.	2023)
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• Investigated	several	methods	of	advection	
methods
• All	used	interpolated	GFS	wind	data
• Filled	cloud	according	to	CLAVR-x	

cloud	top	height	and	cloud	base	
height	

• Found	backward	advection	method	
produced	best	nowcast
• Can	use	this	as	a	benchmark	
• Follows	method	in	Advected	Layer	

Precipitable	Water	(ALPW)	product	
(Gitro	et	al,	2018)

Figure	 1.	 3D	 advection	 cloud	 nowcasting	 example	 using	 Clouds	 from	 AVHRR	
Extended	(CLAVR-x)	as	initial	cloud	state.	Nowcast	is	3	hrs	in	total	with	15	min	steps.
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• ALPW	method	does	marginally	better	
than	persistence

• Issues	with	Advection
• Incorrect	trajectories	
• Computationally	expensive
• Doesn’t	form/dissipate	clouds

• Address	first	two	issues	with	optical	
flow

• Possibly	address	formation/dissipation	
with	ML

Figure	 2.	 Probability	 of	Detection	 (POD),	Critical	 Skill	 Index	 (CSI),	 False	Alarm	Rate	 (FAR),	 and	
Fraction	Skill	Score	(FSS)	plots	for	previous	nowcast	example	for	all	pressure	levels.
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• ALPW	method	does	marginally	better	
than	persistence

• Issues	with	Advection
• Incorrect	trajectories	
• Computationally	expensive
• Doesn’t	form/dissipate	clouds

• Address	first	two	issues	with	optical	
flow

• Possibly	address	formation/dissipation	
with	ML

Figure	3.	Fraction	skill	score	evaluated	following	GFS	trajectories	to	analyze	skill	for	change	in	cloud	
fraction	over	time	of	nowcast.



0.64	μm	Imagery
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• Optical	Flow	(OF)	Definition:
“The	distribution	of	apparent	velocities	of	
movement	of	brightness	patterns	in	an	
image”		(Horn	and	Schunck	1981)

• Like	a	different	channel	on	an	imager,	OF	
provides	unique	context	of	an	image	
scene	for	a	variety	of	users
Ø NWP
Ø Forecasters
Ø Machine	Learning/AI

• OF	is	an	important	tool	for	3D	cloud	
diagnosis	and	nowcasting	with	multiple	
satellite	imagers!

• OF	computed	here	using	the	Optical	flow	
Code	for	Tracking,	Atmospheric	motion	
vector,	and	Nowcasting	Experiments	
(OCTANE;	Apke	et	al.	2022;	
https://github.com/JasonApke/OCTANE) Figure	 4.	 GOES-16	 Ch-02	 0.64	 μm	 imagery	 plotted	with	 optical	 flow	winds	 (white	

barbs)	over	a	low-pressure	system	of	the	coast	of	VA/NC.

Optical	Flow	Motions

https://github.com/JasonApke/OCTANE


High	Wind	Shear	(Severe	Hailstorms)

Figure	5.	(Left)	GOES-16	Day-Cloud	Phase	enhancement	(from	0.64,	1.6,	and	10.3	μm	imagery)	shown	with	(Right)	Dense	optical	flow	colored	by	wind	speed	with	
brightness	indicating	the	0.64	μm	reflectance	(The	Speed	Sandwich	product).	

Low	Wind	Shear	(Flash	Flooding)
TX OK

Dense	motion	enables	warping	and	feature	tracking,	which	can	
render	cloud-top	properties	w/	time,	e.g.,	cooling	derivation

8



9

• OF	motions	can	be	used	to	infer	where	clouds	
reside	at	future	time-frames

• A	convenient	assumption	->	The	OF	motions	in	
the	grid	are	continuous	(no	discontinuities)
• True	for	radar	data
• False	for	visible/infrared	satellite	imagery!

• If	the	optical	flow	field	were	continuous,	a	
backwards	advection	scheme	could	be	used	to	
infer	the	future	cloud	field

• With	piecewise	fields,	it	is	instead	better	to	use	
optical	flow	warping	techniques	which	account	
for	time-related	changes	to	the	optical	flow	field!
• Note,	another	option	would	be	to	use	

objective	analysis	on	each	layer	observed	in	
the	image	(computationally	expensive) Figure	6.	Schematic	of	continuous	optical	flow	field-based	nowcasting.	

With	backwards	advection	technique.

1924UTC

1925UTCu/v
Interpolate	u/v

1923UTC

Interpolate	Radiance	
(or	any	other	field)

Nowcast	1925	UTC	Image

**IF	the	OF	field	is	continuous,	then	
backwards	advection	can	be	used!**

Image/OF	grid	at	1923	UTC

Goal:	Nowcast	the	image	@	1925	UTC

Optical	Flow
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Figure	7.	Schematic	of	optical	flow	temporal	interpolation.	

• One	such	warping	technique	is	to	first	infer	
the	optical	flow	field	at	a	time	of	interest,	
then	use	that	field	to	move	the	imagery
• We	use	a	method	by	Baker	et	al.	2011,	

includes	occlusion	reasoning
• This	type	of	warping	can	be	used	to	

approximately	increase	imagery	temporal	
resolution	(MesoAnywhere)

• Can	also	be	used	to	match	scan	times	
between	multiple	imagers
• Useful	for	composites	and	image	

stereoscopy
• The	forward	warping	process	can	be	used	to	

nowcast	imagery	using	only	optical	flow!

1925UTC

1923UTC

Optical	Flow	
at	1923	UTC

~1924UTC

Citation: Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, 2011: A database and 
evaluation methodology for optical flow. Int. J. Comput. Vis., 92, 1–31, doi:10.1007/s11263-010-0390-2.

Approximate	
Optical	Flow	
at	1924	UTC

New	OF	field	can	
be	used	to	look	

forward/	
backward	in	time
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Mesosector	2
Mesosector	1

1	min 30	sec
1	min

5	min

MesoAnwhere	(all	30-Sec)Native	Imagery
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Mesosector	1/2		
(30-sec)

GeoColor	computed	downstream	of	interpolation,	
meaning	city	lights/terminator	will	not	contain	artifacts!

Let’s	Zoom	In
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Actual	30	secInterpolated	30	sec



Truth	Imagery Optical	Flow	Nowcasted	Imagery

+	0	Hours+	1	Hours+	2	Hours+	3	Hours 14
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• 18	Mar	2023	example
• 1	hour	nowcast
• Prediction	in	5	min	

increments
• Trained	on	1000	samples	

of	GOES-16	CONUS	
CLAVR-x	data
• 5	min	and	then	10	min	

data
• Possibility	that	

architecture	is	causing	
under-fitting

• Will	need	to	assess	better	
architecture	that	keeps	
time	dimension	separated	
longer

Figure	 8.	 Early	 UNet	 results	 using	 predictions	 as	 input	 for	 subsequent	
predictions



• This	presentation	covered	the	optical	flow	and	machine	learning	research	at	CIRA	to	
nowcast	clouds
• Optical	flow	and	advection	methods	do	well	in	areas	of	where	clouds	only,	but	do	

poorly	in	areas	of	cloud	formation	and	dissipation
• In	regions	where	clouds	only	advect,	optical	flow	and	NWP	wind-based	nowcasting	

methods	perform	well
• Both	techniques	struggle	where	formation	and	dissipation	occurs,	which	we	are	

attempting	to	solve	with	Machine	Learning
Future	Work:
• OCTANE	and	other	products	will	be	used	for	feature	engineering	on	data	inputs	for	

cloud-nowcasting	products,	and	identification	of	feature	importance
• Will	explore	value	of	different	machine	learning	architectures	(i.e.	Time	distributed	

layers,	Diffusion,	LSTM,	Transformers)
17
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For	additional	questions,	contact:
Matt	King,	Jason	Apke

matt.king@colostate.edu,	jason.apke@colostate.edu
3925A	West	Laporte	Ave.	Fort	Collins,	CO	80523-1375
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