

Insights on 3D evolution of CMEs in the inner corona

Satabdwa Majumdar, Ritesh Patel, Vaibhav Pant and Dipankar Banerjee **PUNCH 2 Science Meeting (August 9 - 11, 2021)**

Overview : 3D kinematics of 59 CMEs are studied in the STEREO COR - 1 and COR - 2 field of view with the help of the Graduated Cylindrical Shell (GCS) model (Thernesien et al. 2009). The fitted model parameters are then analysed for a better understanding of the initial kinematics of CMEs in the inner (< 3R) and outer corona.

Quiescent prominences (PEs)

The source regions of all 59 CMEs were identified using back projection. The identified sources were classified into 3 classes : ARs - 20/59 PEs - 20/59 APs - 19/59

Active Regions (ARs)

Active Prominences (APs) : PEs with foot-point(s) connected to ARs

STEREO - A / COR - 1

Date	Time (hh:mm:ss)	Source Region	Height (h) (R_{\odot})	Longitude (ϕ) (deg)	Latitude (θ) (deg)	Tilt angle (γ) (deg)	Aspect ratio (k)	Half-angle (α) (deg)	$V_{\rm CDAW}$ (km s ⁻¹)	V ₀ (km
2007 May 9	02:00:00	AR	3.36	69	3.9	_	0.33	0	264	2
2008 Mar 25	19:20:00	AR	3.36	188	-15	69	0.17	12	1103	10
2008 Mar 26	10:52:22	AR	3.71	1	-5	2	0.21	4	163	24
2008 Apr 5	16:15:00	PE	3.35	258	0	-65	0.13	14	962	9
2008 Apr 9	10:45:00	AP	3.22	193	-21	2	0.12	8	650	5

The pair of COR - 1 images are fitted with the synthetic flux-rope generated from the GCS model to capture the evolution in inner corona, and so is done for COR - 2 images as well.

STEREO - B / COR - 1

Table 1 GCS Model Parameters of All the CMEs

Radial and lateral evolution of CMEs in inner corona : Observational evidence of Lorentz force imprints

We connected the true width expansion and radial acceleration profiles in 3D and found that they are veritable manifestation of the same Lorentz force. Further, from from the width-acceleration unification, we reported on the height range till which the impact of Lorentz force stays dominant in the innr coronal kinematics of CMEs !!

connected to PEs tending to be mostly gradual events, while those connected to ARs are impulsive.

Coupling of kinematics in the inner and outer corona, source region imprints...

Peak acceleration v/s peak velocity

Velocity at peak acceleration v/s peak acceleration

Constant acceleration v/s mean velocity in inner corona

Linear velocity v/s mean velocity in inner corona

Distribution of overall mean velocity and mean velocity in inner corona

Our Take Home Points :

- Peak speeds and accelerations are better correlated for CMEs connected to ARs
- The drag influence of solar wind can even start as early as in the inner corona itself. Also, the a-v anti-correlation is much weaker for CMEs from PEs, is the drag interaction different ??
- Inner coronal Observations can be used for CME arrival time estimation with minimised lead time of prediction !!
- The average speeds are different in the inner and outer corona. A look back into tagging CMEs with a single average speed
- The height of peak aacelerations lies in the range 2.5-3R, thus indicating that it is Lorentz force that propels the CMEs to peak accelerations !!

References :

- Majumdar, S., Pant, V., Patel, R., & Banerjee, D. 2020, ApJ, 899,6
- Majumdar, S., Patel, R., Pant, V., Banerjee, D., 2021, ApJ

Thank You..

