From the molecular level to the global scale: Bridging disparate time and length scales in atmospheric chemistry

[thbertram@ucsd.edu]

Disparate Time and Length Scales

Observation:

e.g., Strong dependence of surface reaction rate on surfactant coverage.

Science question:

e.g., Surface reactions impact oxidant loadings and lifetime of GHGs

Communication Breakdown

Legend

$$\frac{d[CH_4]}{dt} = \sum Sources - k[CH_4][OH] - k[CH_4][Cl] - k_{dep}[CH_4]$$

An Example: Halogen Activation Mechanisms

Science Questions:

- 1. Are heterogeneous reactions involving N_2O_5 a significant source of chlorine radicals?
- 2. What level of molecular complexity is required to accurately model the reaction mechanism?

Experiment Design

Reference: Bertram et al., Atmos. Meas. Tech., 2009a

Molecular Level Findings

Reference: Bertram and Thornton, ACPD (2009), Roberts et al., GRL (2010)

Toward a General Parameterization of $\gamma(N_2O_5)$

References: Ciobanu et al., JPC A 2009 Williams et al., Aerosol Sci. and Tech. 2006

Macroscopic Laboratory Experiment

Reference: A collaborative project with the SIO hydraulics lab [Grant Deane, Lynn Russell, Kim Prather]

In Situ Observations of Kinetics

Reference: Bertram and Thornton, ACPD (2009)

moles Cl^{-} / moles NO_{3}^{-}

In Situ Observations of Rates

Laboratory Prediction

Region 1 NO₃/Cl < 0.05 γ (N₂O₅) = 0.01 Y(CINO₂) = 0.5

Region 2
NO₃/Cl > 0.5
$$\gamma(N_2O_5) = 0.035$$

Y(CINO₂) = 1

Reference: Ryder et al, in preparation (2011)

Remote Perspective

Method: Use NO₂ observations from GOME-2 (9:30AM overpass)

Point	Δt	Over NYC
i	4 hours	5:30 AM
ii	6 hours	3:30 AM
iii	8 hours	1:30 AM
iv	12 hours	9:30 PM

Remote Perspective

Model Integration

I. Laboratory: Rates and Yields

II. Model: Test empirical parameterizations

III. Challenge Model with observations on multiple scales

Conclusions and Acknowledgements

Time and length scale

Olivia Ryder (UCSD), Theran Riedel, and Joel Thornton (UW)

Kimberly Prather and Elizabeth Fitzgerald (UCSD)

Funding: NOAA, NSF

