

Satellites and Satellite Observing in the Future

Mark A. Bourassa¹ and Eric J. Lindstrom²

- 1. Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology, The Florida State University, Tallahassee, FL32306-2840 <u>Bourassa@coaps.fsu.edu</u>
- NASA Headquarters, Science Mission Directory, 300 E. Street. Washington DC 20546-0001

Eric.j.Lindstrom@nasa.gov

•Initial Global Ocean Observing System for Climate Status against the GCOS Implementation Plan and JCOMM targets

Outline

- Setting the stage
 - Accuracy Desires
 - Sampling error monthly averages
- Different Perspectives on Flux Product Creation
- Summary of Recent Results in
 - Turbulent Heat Fluxes
 - Radiation
 - Precipitation
 - Stress (momentum)
 - CO₂
- Upcoming and developing satellite missions

Flux Accuracies and Applications

Submonthly Contribution to Average LHF

• *L* is determined through a bulk formula.

 $L \approx \overline{\rho} L_{v} C_{E} \overline{U} (\overline{q}_{sfc} - \overline{q})$

- Where the overbar indicates a monthly average
- There is considerable controversy about that accuracy of this averaging
- A more accurate approach is to calculate the flux at each time step then average these fluxes: $L \approx \rho L_v C_E U(q_{sfc} q)$
- If we apply Reynolds averaging this equation becomes

$$L = \overline{\rho}L_{v} \overline{\left(C_{E} + C_{E}'\right)\left(U + U'\right)\left(q_{sfc} - q_{sfc}' - q + q'\right)}$$

- If we assume density variations are not important, this equation becomes $L = \overline{\rho} L_v \overline{C_E} \overline{U}(\overline{q_{sfc}} - \overline{q}) + \overline{\rho} L_v \left(\overline{C_E} \overline{U'(q' - q'_{sfc})} + \overline{U} \overline{C'_E(q' - q'_{sfc})} + \overline{(q' - q'_{sfc})} \overline{C'_E U'}\right)$
- Following examples of monthly biases are based on ECMWF reanalysis.
 - Plots bias from using monthly averaged flux input data
 - They do not include wave information

Perspectives on the Use of Satellite ObservationsSatellite Observations

- Each of these approaches has its strengths and weakness, requirements for sampling, and approaches to blending the data
- Users of the resulting products have very different requirements depending on the application
 - One product does not fit all!
- Each of these approaches would benefit from more data, better calibration,
 and better understanding of the related physics

Example Retrievals of 10m Air Temperature

Validation of Air/Sea Temperature Differences

Daily Average TS-TA, degC, 2004/01/27

- Roberts et al. (2010) retrieval technique for T_{air} and q_{air} .
- Comparison to buoy observations (circles in the Gulf of Mexico)

Hurricane Francis Air/Sea Differences 30 Aug 2004 21 Z

- T_{air} and q_{air} from Roberts et al.
- Wind speed interpolated from NCDC

Example LHF Retrieval: Warm Core Seclusion

 Black line is the track from
 Lack of retrieval in areas Ryan Maue's data set
 Warm-Core Seclusion 07 October 2004 1800Z

Warm Core Seclusion Air/Sea Differences

Radiometers

Radiative Fluxes

- There is currently no satellite programmed aimed a dramatic improvements in radiative fluxes.
- Incremental progress can be made with better cloud and water vapor information, particularly in the boundary-layer.
 - The previous studies suggest that we can improve estimates of 10m humidity.
 - Improved estimates of latent heat fluxes would also help NWP estimates of humidity.
- We can anticipate modest improvements, particularly in the net long-wave flux.

Precipitation

- There are numerous satellites that help with precipitation estimates:
 - Radiometers
 - Precipitation radar
 - Altimeters
 - Can also use scatterometers not done at this time
- Future Instruments
 - Global Precipitation Mission (GPM)
 - Duo-Frequency Scatterometer (DFS)

•Aquarius/SAC-D

•Goal: Provide sea surface salinity observations

Description

•*Primary Science Objective:* Using a Lband radiometer and scatterometer, Aquarius will provide pioneering sea surface salinity observations of the global ice-free ocean at 150-kilometer resolution over a 3-year mission lifetime.

Climate

•Data Products

- •Product: Sea surface salinity (SSS)
- •Repeat Interval: global in 7 days
- •Quicklook products: weekly map
- •Map Scale: monthly & 150-kilometer
- •Accuracy: 0.2 psu (practical salinity unit)
- •Access URL: http://aquarius.nasa.go

GLOBAL SCATTEROMETER MISSIONS

To What Does a Scatterometer Respond?

• It can be further improved in terms of surface relative wind vectors:

$$\boldsymbol{\tau} = \rho C_{D} \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right| \left(\mathbf{U}_{10} - \mathbf{U}_{sfc} \right) \qquad L = \rho L_{v} C_{E} \left(q_{10} - q_{sfc} \right) \left| \mathbf{U}_{10} - \mathbf{U}_{sfc} \right|$$

• Does a scatterometer respond to U_{10} or to $U_{10} - U_{sfc}$ or stress?

• *Cornillon and Park* (2001, *GRL*), *Kelly et al.* (2001, *GRL*), and *Chelton et al.* (2004, *Science*) showed that scatterometer winds were relative to surface currents.

•*Bentamy et al.* (2001, *JTech*) indicate there is also a dependence on wave characteristics.

- The drag coefficient can be modeled as depending on waves
- *Bourassa* (2006, *WIT Press*) showed that wave dependency can be parameterized as a change in U_{sfc} . This greatly simplifies the drag coefficient
 - Considering waves reduces the residual between scatterometer equivalent neutral winds and equivalent neutral winds calculated from buoy observations

• A $\rho^{-0.5}$ dependency is found in the residual between scatterometer equivalent neutral winds and equivalent neutral winds calculated from buoy observations

USCLIVAR/SeaFlux

Background

- The heat fluxes and the modified log-wind profile
 - Latent heat flux, $Q = \rho L_v q_* |u_*| = \rho L_v c_e (q_{sfc} q_{air}) |u_*|$
 - Sensible heat flux, $H = \rho C_p \theta_* |u_*| = \rho C_p c_h (\theta_{sfc} \theta_{air}) |u_*|$
 - The bulk of wave modifications enter through u_{*}; however, waves also modify boundary-layer stratification and roughness lengths for temperature and moisture, which do influence q_{*} and θ_{*}
- Waves influence u_* in several ways

$$U(z) - U_{sfc} = \frac{u_*}{k} \ln\left(\frac{z - d}{z_o} + 1\right)$$

- Modification of the momentum roughness, z_o for surface gravity waves (water waves) often parameterized as proportional to u_{*} squared: Charnock's relation
- In some models the proportionality is a function of wave characteristics

Goal & Issues

- Goal: Estimate the change in the magnitude in Global Ocean surface fluxes of latent and sensible heat due to waves (swell and wind waves) relative to a Charnock parameterization (waves modify $U_{\rm sfc}$).
 - On event time scales (Meteorological meso and synoptic scales)
 - Monthly averages for larger spatial scale patterns
 - Annual averages for basin scale patterns
 - Consider directional issues (not considered in other models)
 - Implications on intercalibration and change
- Caveats:
 - This analysis is based on theory observations and not sufficient
 - There is a wide range of proposed mechanisms for how waves modify surface fluxes.
 - Model used herein is Bourassa (2006):
 - Moisture roughness length based on surface renewal theory: Clayson-Fairall-Curry (1996) model.

LHF Differences Due to Wave-Induced Shear

- Animation of 6 hourly change in fluxes:
 - Case with waves minus case with $U_{orb} = 0$
 - 6 hour time step

Mark A. Bourassa

USCLIVAR/SeaFlux

Monthly LHF Differences Due to Wave-Induced Shear

February 1999

August 1999

USCLIVAR/SeaFlux

Monthly SHF Differences Due to Wave-Induced Shear

February 2000

August 1999

USCLIVAR/SeaFlux

DFS vs. QuikSCAT and XOWVM Simulated Retrievals based on Katrina (2005)

•DFS captures true wind signal where QuikSCAT high winds are tied to rain

•DFS accurately depicts hurricane force wind radii and retrieves winds into category 2 range, but not into cat 3 range

•DFS cannot identify small scale wind maxima seen by XOVWM

Where Do We Go?

- More data for comparison & intercalibration
 - Primarily atmospheric humidity and temperature, particularly for high latitudes
 - High Wind Speeds
 - Sources: flux reference sites, other buoys, and Research Vessels, UAVs?
 - R/V data needs to be QC'd: SAMOS has automated system in place
- Flux train
 - AMSU, AMSR2, AIRS, AVHRR, scatterometer, (LIDAR)
 - A-Train orbit vs TRMM orbit (or both)
 - Sampling must be improved through wide international collaboration
 - GCOM-W2 will have AMSR2 and DFS on the same platform
- Pre-GHRSST-like activity??
 - Improve multi-sensor products (e.g., spinning up for winds)
 - Better understand limitations of the current observing system

Satellites and Satellite Observing in the Future

Mark A. Bourassa¹ and Eric J. Lindstrom²

- 1. Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology, The Florida State University, Tallahassee, FL32306-2840 <u>Bourassa@coaps.fsu.edu</u>
- NASA Headquarters, Science Mission Directory, 300 E. Street. Washington DC 20546-0001

Eric.j.Lindstrom@nasa.gov

- For wind driven waves and common wave ages
 - this is qualitatively similar to the HEXOS results, and
 - qualtitatively similar to Taylor and Yelland (2001)

Mark A. Bourassa

Ocean Sciences 2010

Percentage Change in Surface Relative Winds Example for a 00Z Comparison

- The percentage change in surface relative winds is roughly proportional to the change in energy fluxes.
- The percentage change squared is roughly proportional to changes in stress.
- The drag coefficient also changes by about half this percentage.

Wind

Wind

Decreased Vertical Shear Increased Vertical Shear From *Kara et al.* (2007, *GRL*)

30

Ocean Sciences 2010

v

