High Latitude Fluxes and Products: Gridded, time series

W. G. Large Oceanography Section National Center for Atmospheric Research Boulder Colorado

Why gridded flux time series ?

- Forcing component models of the ocean, sea-ice, atmosphere and land
- Assessing flux errors in coupled climate simulations
- Estimating and understanding large scale (global) trends
- Investigating coupled feedbacks (clouds) and remote responses

Challenges of sea-ice (snow) cover

Ocean Surfaces Fluxes

For a fractional sea-ice coverage, f_i , there are air-sea $\{Q_{as}, F_{as}, \mathcal{T}_{as}\}$ and ice-ocean { Q_{io}, F_{io}, T_{io} } fluxes $Q_{ocn} = f_0 Q_{as} + f_i Q_{io} + Q_R$ $F_{ocn} = f_0 F_{as} + f_i F_{io} + Runoff$ $\boldsymbol{\tau}_{ocn} = \mathbf{f}_{o} \boldsymbol{\tau}_{as} + \mathbf{f}_{i} \boldsymbol{\tau}_{io}$ $f_0 = 1 - f_i$

Air – Sea (Ice) Flux Components

 $F_{as} = E(evaporation) + P_{R}(rain) + P_{S}(snow)$

- $Q_{as} = Q_{s}(SW \downarrow \uparrow) \rightarrow Q_{I}(insolation) [1 \alpha_{s}(albedo)]$
 - + $Q_L(LW \downarrow \uparrow) \rightarrow Q_A(LW \downarrow) \varepsilon \sigma (SST)^4$
 - + Q_E (latent) $\rightarrow E \Lambda$ (latent heat of vaporization)
 - + Q_{H} (sensible)
 - + Q_P (heating/cooling of P to SST and snow melt)

Known (not certain about much) $\Delta U = U(h) - U_o$ from satellites gives τ_{as} , but neither τ_{ai} nor τ_{io} , to within about 10%

Scatter in Southern Ocean Westerlies, may reflect phase of AAO

C_{YX} X = AAO 20 a. [_aQ_{as} (W/m²) 1980–2004 10 0 $f_o Q_{as}$ -10 -20 -30 -40 -50 -60 2D f_oF_{es} (mg/m², 1980-2004 10 f_oF_{as} -10 r_{YX} contoured at -20 -30 00000 -40 -50 -60 $\pm .4, \pm .6, \pm .8$ 0.6 $f_{o}\tau_{\lambda}$ (10⁻¹ N/m²) 1980-2004 0.5 c. 0.4 0.3 $f_0 \tau_\lambda$ 0.2 0.1 0 -0.1 -0.2 0.6f_oτ_φ (10⁻¹ N 1980-2004 0.5 0.4 $f_{o} \boldsymbol{\tau}_{\phi}$ 0.3 0.2 0.1 0 00 -0.1 -D.2 100° 200° 300°

Known (not certain about much)

 $\Delta \mathbf{U} = \mathbf{U}(h) - \mathbf{U}_{o} \text{ from satellites gives}$ $\mathbf{\tau}_{as} \text{ ,but neither } \mathbf{\tau}_{ai} \text{ nor } \mathbf{\tau}_{io} \text{ , to within about } 10\%$

$$= +$$

< 2 W/m² ~ 2% of Q_E

Northward heat transport (PW)

Depth Integrated Heat Budget : Labrador Sea

Lab Sea column heat Budget (W/m²)

Region	Mean Advection	Eddy Advection	Surface Heat Flux	Residual
WGC	488	-412	-78	-2
LC	90	-36	-55	-1
Interior	-12	96	-79	4
Lab Sea	53	-1	-57	-5

Known (not certain about much)

 $\Delta \mathbf{U} = \mathbf{U}(h) - \mathbf{U}_{o} \text{ from satellites gives}$ $\mathbf{\tau}_{as} \text{ ,but neither } \mathbf{\tau}_{ai} \text{ nor } \mathbf{\tau}_{io} \text{ , to within about } 10\%$

$$= +$$

< 2 W/m² ~ 2% of Q_E

 $< F_{ocn} - Runoff > ~ .1\%$ of E BIG PROBLEM

Figure 4: Zonally averaged climatological ocean precipitation from various sources, as described in Large and Yeager (2008).

Northward freshwater transport (Sv)

OGCM Fidelity

S

March model salinity unstable &comparable to WOCE (P18) and WOA98

Coordinated Ocean Research Experiments (CORE) :

Hypothesis : With similar forcing, different coupled ocean-ice models will give similar solutions.

FALSE !!!

CORE : AMOC

Coordinated Ocean Research Experiments (CORE) :

 $F_{ocn} = f_o F_{as} + f_i F_{io} + Runoff + \underline{F}_{\underline{r}}$

 $\mathbf{F_{r}} = \mathbf{V_{p}} [\mathbf{S}(1) - \mathbf{SSS_{obs}}] \cdot \{ f_{o}; 1-H(f_{i}); (f_{o}+f_{i}) \}$

 $Vp = \{ 0; 50m/4y; 50m/1y; 50m/30d \}$

Sensitivity Model C

Bulk turbulent fluxes :

$$E = \rho \qquad C_{E}(h) \qquad \Delta U(h) \mid [q(h) - q_{sat}(SST)]$$

 $\begin{aligned} Q_{\rm H} &= \rho \ C_{\rm p} \ C_{\rm H}(h) \ | \Delta U(h) | & [\theta(h) - (SST)] \\ \boldsymbol{\tau}_{\rm as} &= \rho \ C_{\rm D}(h) \ \Delta U(h) | \quad \Delta U(h) \end{aligned}$

- **U(h)**, wind velocity at z = h (10m)
- $\theta(h)$, potential temperature at z=h
- q(h), specific humidity at z=h
- ρ , air density
- SST, sea surface temperature
- \mathbf{U}_{0} , sea surface current

 $\Delta U = U(h) - U_0$, Surface Vector Wind (satellite)

Labrador Sea, T(182m), Year 10

C_{YX} X = NAO Γ_aQ_{as} (W/m²) 1950–2004 O f_oQ_{as} -10 -20 -30 -40 -50 -60 20 b. f_oF_{es} (mg/m²/ 1980-2004 10 f_oF_{as} -10 r_{YX} contoured at -20 -30 -40 30 $\pm .4, \pm .6, \pm .8$ -50 0.6 f_oτ_λ (10⁻¹ N/m 1950-2004 0.5 0.4 0.3 $f_{o} \boldsymbol{\tau}_{\lambda}$ 0.2 0.1 0 -0.1 -0.2 0.6 0.5 f_oτ_φ (10⁻¹) 0.4 $f_0 \tau$ 0.3 φ 0.2 0.1 10 -0 -0.1 -0.2

100° 200° 300°

e.g Ocean (lce) surface fluxes Q_{ocn} , the net surface heat flux into the ocean F_{ocn} , the net freshwater flux into the ocean

 $\mathbf{T}_{ocn} = (\tau_{\lambda}, \tau_{\phi})_{ocn}$, the horizontal stress, or momentum flux <u>vector</u> **into** the ocean (zonal, +ve east, meridional, +ve north)

All these fluxes are highly variable in time (weather, seasonal cycle) and space (tropics to high latitudes), with much less interannual (decadal) variability and small trends;

AMOC

