

Heat fluxes over sea ice

FROM A SEA ICE MODELING PERSPECTIVE

Martin Vancoppenolle Atmospheric Sciences - University of Washington Earth and life Institute – Université catholique de Louvain (Belgium)

1. INTRO

Why energy fluxes over sea ice are important?

- Sea ice affects climate
 - Insulation effect
 - Ice-albedo feedback
 - Ocean circulation
- Sea ice is changing
- Energy fluxes over sea ice are central
 - Sea ice mass balance (dh/dt = F/L => 1 W/m² = 10 cm/ yr)
 - Sea ice model development
 - Climate projections

Heat budget over sea ice

- $F_{sw} + F_{lw} + F_s + F_l = F_c + F_m$
 - F_{sw} = net shortwave flux
 - F_{Iw} = net longwave flux
 - F_s & F_l sensible and latent heat fluxes (turbulent)
 - F_c = conduction flux through the snow/ice
 - F_m=heat sink associated to ice melt

Regional heat flux over polar oceans

- Open water
- Ice thickness distribution
- Conduction heat flux, albedo, surface temperature depend on ice /snow thickness

A submarine sounding of sea ice draft in the Arctic (Thorndike et al., 1975)

Sea ice mass balance and energy budget are strongly inter-dependent

2. SEA ICE AND MODELS

Sea ice models

1D / process models

development – process studies

- Sea ice thermodynamics
- Fluxes from field obs.
- No feedbacks
- Highly sensitive
- Easy tuning to match observations

3D Hindcasts

• Sea ice physics (thermodynamics, dynamics and thickness redistribution)

- Ocean dynamics
- Atmospheric fluxes from reanalyses
- Ice-ocean feedbacks
- Less sensitive
- Tuning not too hard
- Reasonable agreement with observations

Climate simulations projections

- Sea ice physics
- Ocean dynamics
- Atmospheric circulation
- Fluxes interactive
- Atmosphere-ice-ocean feedbacks
- Hard tuning
- Agreement with observations for some of them
- Climate variability (ensembles)

Some basics on sea ice simulation with models

- Hindcasts
 - Are not (highly) sensitive to initial conditions
 - Do not have (high levels of) internal variability
 - Comparable to time series of observations
 - Miss atmospheric feedbacks
- Climate simulations
 - Sensitive to initial conditions
 - Have internal variability
 - Need to run ensembles
 - Not directly comparable to time series of obs (long-term means required)
 - Have all feedbacks (in principle)

1979-2006 ice concentration in a hindcast with NEMO-LIM3

1950-2008 daily atmospheric forcing + large-scale ice-ocean model

(b)

Vancoppenolle et al., 2009

1976-2001 ice thickness in a hindcast with NEMO-LIM3

Sea ice mass balance in 3D hindcasts: Summary

Comparison to observations of a sea ice hindcast run with an ice-ocean model (NEMO-LIM) forced by daily atmospheric reanalyses and climatologies (1979-2006)

Diagnostic Ar	rctic	Antarctic
Model - obs. relative bias on summer ice area (%) - Model - obs. relative bias on winter ice area (%) -	21 0.9	- 71 14
Model - obs. relative bias on ice thickness (%) -	-17	-44

Obs of ice area from satellites (Comiso et al., 2008) Arctic thickness data from submarines (Rothrock et al., 2008) Antarctic thickness from visual data (Worby et al., 2008)

Improvement of models

Improvement of models

Sea ice models

1D models

development – process studies

- Sea ice thermodynamics
- Fluxes from field obs.
- No feedbacks
- Highly sensitive
- Easy tuning to match observations

3D Hindcasts validation

- Sea ice physics (thermodynamics, dynamics and thickness redistribution)
- Ocean dynamics
- Atmospheric fluxes from reanalyses
- Ice-ocean feedbacks
- Less sensitive
- Tuning not too hard
- Reasonable agreement with observations

Climate simulations projections

- Sea ice physics
- Ocean dynamics
- Atmospheric circulation
- Fluxes interactive
- Atmosphere-ice-ocean feedbacks
- Hard tuning
- Agreement with observations for some of them
- Climate variability (ensembles)

Sea ice mass balance in climate simulations

% of IPCC models that have sea ice in a given grid cell

Arzel et al., 2006

Sea ice mass balance in climate simulations

Ice extent statistics of IPCC runs Left bar = Arctic / Right bar = Antarctic Grey = minimum extent / White = maximum extent

Mean model ok Grey = minimum extent / White Large scatter Particularly over SH Models with more physics are not necessary better

Errors we have control on

Errors in sea ice simulations

- Errors come from the model or forcing
- Errors from the forcing in hindcasts can bias models and favor larger error in climate simulations
- Particularly large errors in the Southern Hemisphere

3. FLUX STRATEGIES IN SEA ICE HINDCASTS AND ASSOCIATED ERRORS

Fluxes strategies in sea ice models

SW fluxes

- Atmospheric reanalyses
- Equation of *Zillman* (1972)
 - Fsw = Fsw (solar angle, humidity, cloud fraction)
- Equation of *Shine* (1984)

 Fsw = Fsw (solar angle, humidity, cloud fraction, cloud optical depth)

LW fluxes

- Atmospheric reanalyses
- Equations of *Berliand and Berliand* (1952) and *Efimova* (1961)
- Flw = Flw (temperature, humidity, cloud fraction)
- ...

Turbulent fluxes

• Bulk aerodynamic formulae

Arctic

Antarctic

Russian polar drift stations (Lindsay, 1998)

- 6228 / 4403 days of data ullet
- SW Shine (1984) best if cloud optical depth is tuned month by month Bias: - 0.4 W/m² 7.2 W/m² RMS: 31.7 W/m² 25.5 W/m² • Large biases in radiation
- LW *Efimova* (1961) best Bias: -1.5 W/m² 7.3 W/m² RMS: 11.9 W/m² 10.9 W/m²

Barrow radiation observatory (Walsh et al., 2009)

- 4 seasons of data
- Huge scatter in cloud fraction among the different reanalysis products NCEP/NCAR
- fluxes, esp. in NCEP/NCAR
 - SW: + 43 W/m² + 76.9 W/m²
 - LW: 21 W/m² 32.5 W/m²

Errors in fluxes – Antarctic (1)

Radiation data from 2 drift stations (1 month) in the Antarctic: ISPOL (*Hellmer et al.*, 2008) and SIMBA (*Ackley et al.*, 2007)

Errors in fluxes – Antarctic (2)

Time series of daily radiation fluxes

Errors in fluxes – Antarctic (3)

ID	Comput. meth.	q	с	au	Bias	RMSE	c.c.
			SIMBA				
1	NCEP	n.a.	n.a.	n.a.	42.8	50.1	0.63
2 3 4 5	Shine (1984) Shine (1984) Shine (1984) Shine (1984)	TOWER TOWER NCEP CLIM (1.8)	VISUAL VISUAL NCEP CLIM (0.66)	16.297 CLIM (5.6) CLIM (5.6) CLIM (5.6)	$ \begin{array}{r} 0.0005 \\ 16.6 \\ 33.3 \\ 28.32 \end{array} $	$ \begin{array}{r} 12.4 \\ 19.9 \\ 35.5 \\ 34.5 \\ \end{array} $	$\begin{array}{c} 0.92 \\ 0.92 \\ 0.61 \\ 0.55 \end{array}$
6 7 8	Zillman (1972) Zillman (1972) Zillman (1972)	TOWER NCEP CLIM (1.8)	VISUAL NCEP CLIM (0.66)	n.a. n.a. n.a.	-3.92 18.1 21.8	18.5 33.7 30.7	0.79 0.57 0.58

• Formula fed by reanalysis data are in principle better than direct reanalysis

- However, error in the reanalysis values of cloud and humidity imply errors in computed value
- Smallest bias obtained when combining formula, reanalyses and climatologies

Summary & conclusions

- Energy fluxes are key for understanding the sea ice mass balance
- Model tuning for validation in hindcast simulations is dependent on energy fluxes
- Errors in model calibration can be amplified in climate simulations
- Further developments in model physics depend on the quality of the fluxes

Summary & conclusions (2)

- Radiation fluxes from reanalyses should not be used
- Radiation fluxes formulations are quite good in principle
- However, errors in cloud fraction, optical depth and humidity from data induce biases in prescribed fluxes
- More data ???

Thxs & Refs

THANKS TO: Cc Bitz, Ralph Timmermann, Steve Ackley, Thierry Fichefet, Hugues Goosse, Petra Heil, Jan Lieser, K.C. Leonard, M. Nicolaus, Tim Papakyriakou, Jean-Louis Tison, Cathy Geiger, Tony Worby, Timo Vihma, Mike Lewis, Bruno Delille, and Ioulia Nikolskaia and Ivan Grozny + forgotten!

- Arzel, O., Fichefet, T. & Goosse, H. Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. *Ocean Modelling*, **2006**, *12*, 401-415
- Lindsay, R. W., Temporal variability of the energy balance of thick Arctic pack ice. *Journal of Climate*, **1998**, *11*, 313-331.
- Walsh, J. E., Chapman, W. L. & Portis, D. H., Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. *Journal of Climate*, **2009**, *22*, 2316-2334.
- Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G. & Morales Maqueda, M. A., Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. *Ocean Modelling*, 2009, 27 (1-2), 33-53
- Vancoppenolle, M., Timmermann, R., Ackley, S., Fichefet, T., Goosse, H., Heil, P., Lieser, J., Leonard, K. C., Nicolaus, M., Papakyriakou, T. & Tison, J.-L., Assessment of radiation forcing data sets for large-scale sea ice models in the Southern Ocean.
 Deep Sea Research (II), 2010, in revision.