Surface Flux Related Activities At NOAA National Climatic Data Center

Huai-Min Zhang, Lei Shi & Richard W. Reynolds

NOAA National Climatic Data Center (NCDC) Asheville, NC

http://www.ncdc.noaa.gov/oa/rsad/air-sea.html Huai-Min.Zhang@noaa.gov

March

Boulder, CO

Acknowledgement: Chris Jeffery, Chris Fairall

NOAA's National Climatic Data Center

OUTLINE

• NCDC Surface Flux Related Products:

- SST: Reynolds OI SST daily, global ¹/₄° gridded; 1-10 km is in development
- Sea Surface Winds: 6-hourly, global ¹/₄° gridded
- Sea Surface Air Temp & Humidity (poster)

Turbulent Air Sea Fluxes

Product Service and Evaluation Facility:

NOAA Climate Data Record (CDR) Office & WCRP Surface Flux Analysis (SURFA)

- Central Archive: NCDC is mandated to archive weather & climate data
 - NOAA Satellites: Stewardship by the CDR office
 - In-Situ: Ocean Reference Stations; Flux Towers; Climate Ref Network
 - NWP Centers SURFA: ECMWF, German, Japan (JMA), Meteor-France, UK
- Web based, interactive and dynamic data service, evaluation & monitoring

Conceptual END-TO-END PROCESS From Data Ingest to Blended Products & Services

NOAA's National Climatic Data Center

SEAFLUX 2010 March 17-19

Boulder, CO

<u>Sea Surface Products: SST</u>

A suite of analyses for diff applications:

- 1. Monthly ERSST: 1854-present, 2 grid
 - In situ data only; <u>for long-term climate study</u>
- 2. Weekly OI: 1981-present, 1 grid
 - In situ data + AVHRR; <u>for seasonal & ENSO</u>
- 3. Daily OI: 1981-present, 1/4 grid; for process studies
 - In situ data + AVHRR (AVHRR-only; 1981 \rightarrow)
 - In situ data + AMSR+AVHRR (AMSR+AVHRR; June 2002 →)
 - Higher resolution (1-10 km) in development

View Point: High Resolutions: Obs Support & Done Carefully

Daily SST fields for 1 January 2007

- In winter warm Gulf Stream is found off shore while colder shelf water is present between the Gulf Stream and the coast
- Note in particular the differences near the South Carolina Coast (33°, 80°W)
- Colder shelf water is evident in the AVHRR-only, the AMSR+AVHRR

Higher Resolution (1-10 km) OI SST: Take the advantage of the complementary IR and Microwave Obs

	AVHRR	MW
Resolution (km)	1-5	50
See Through Cloud?	No	Yes

Daily OI SST Anomalies

- 27 August: Katrina
 - Weak anomaly in Gulf in Path + AMSR-E
- 28 August: Katrina
 - Strong anomaly in Path + AMSR-E
- 29 August: Katrina
 - Strong anomaly in Path + AMSR-E
 - Modest anomaly in Path

Higher Resolution (1-10 km) OI SST: Take the advantage of the complementary IR and Microwave Obs

Two-Stage for High Res SST:

<u>Sea Surface Products: Surface winds</u>

- Satellite Retrievals: RSS (NASA Pathfinder)
- 6-hourly & ¼ global sea winds, blended from multiple (up to 6) satellites
- Blended Winds available from July '87 onward
- Climatological monthlies were computed for base period 1995 – 2005 (with obs of ≥ 3 satellites)

Typical sea wind speed observing satellites since June 2002

Product Resolution to be Consistent w/ Samplings

% Global Data Coverage for Various Time Resolutions On Global 0.25°, > 75% in time

Time period & satellites Time Resolution	JUL1987→ I F08	JAN1991→ II F10, F11	JUN1995→ III F10, F11, F13	JAN1998→ IV F11,F13, F14 TMI	JAN2000→ V F13, F14, F15 TMI, QSCAT	JUN2002-→ VI F13, F14, F15 TMI, QSCAT AMSR-E
6-hourly	12	26	42	56	66	91
12-hourly	27	72	97	99	100	100
24-hourly (daily)	75	100	100	100	100	100

Global Patterns: 1995 – 2005 mean – Scalar vs Vector means

Wind (m/s): Annual Climatology, as scalar mean

"The Good, the bad, and the Ugly": Wind Spikes

Max Wind > 30 m/s

Max Rain > 10 mm/hr

<u>Sea Surface Products: Air Temp & Humidity</u>

- Retrievals using neural network technique, from AMSU measurements on NOAA POES
- Training dataset are constructed from co-located global buoy and ship measurements (ICOADS)
 - Special QC by FSU (Shawn Smith)
- Ta
 - Predictor: AMSU-A channels 1-4 and 15
- Qa
 - Predictor: AMSU-A channels 1-4 and AMSU-B channels 1, 2, and 5

Ta & Qa Retrievals: Validation

• Validation dataset: Collocated global buoy and ship data that are not used in training dataset

Ta & Qa Retrievals: Validation

• Validation dataset: Collocated global buoy and ship data that are not used in training dataset

Sensible Heat fluxes

- Upper Panel: NCDC Blended Seawinds, NCDC Ta & Qa, NCDC Daily OI SST
- Mid Panel: NCDC Blended Seawinds, NCDC Ta & Qa, RSS MISST

Έ

3

REMSS - HS for 2006 (postive upward) 100 80 50 60 W m_ 40 20 -50 0 20 -150 -100 -50 0 50 100 150

SEAFLUX 2010 March 17-19 Boulder, CO

Flux Comparisons

Ta: WHOI - NCDC

Courtesy: Chris Jeffery, NOAA NODC_{SEAFLUX 2010} Boulder, CO

NOAA's National Climatic Data Center

18

SURFA: Surface Flux Analysis

- Driver: Surface processes are key in improving NWP & climate model forecast skills
- **Objective:** SURFA is to institutionalize the evaluation of near real-time NWP (& Climate Model & Reanalysis) fluxes and related fields with high quality reference data
- Initiation: WCRP WGSF, WGNE, OOPC ...
- <u>Status:</u>
 - NCDC as central archive & service
 - Documents: NWP archive specifications; Submission Agreements
 - Current Participation:
 - NWP Centers: ECMWF, German DWD, Japan (JMA), Meteor-France, UK
 - In-Situ: Ocean Reference Stations, Flux Towers, Climate Reference Network
 - Data available from NCDC:
 - http://www.ncdc.noaa.gov/oa/rsad/air-sea.html

Boulder, CO

SPEC: Satellite Product Evaluation Center (NCDC - ORNL)

- Provide a uniform approach (Common Data Model-based) for the extraction of grid/swath from point, line, polygon and trajectory data, and therefore maximize reusability
- Provide a large, high-performance cache of satellite/model data for select locations.
- Provide a desktop or command-line tool for:
 - > Co-locations/matchups of your data.
 - Integration of your data with the SPEC database cache.
 - > Statistical analysis and export to mutilple formats.
 - > Monitoring and automated alerts.

LandFlux Example

Selected Site: Bondville- Illinois (AmeriFlux)

22

Variable:	Temperature 💌		
Data Sources:			 Add AmeriFlux (L.2) MODIS Day Time LST - MOD11A2 (v.5) MODIS Night Time LST - MOD11A2 (v.5) All
Time Span:	Start Date: 03/01/2000 March <u>2000</u>		End Date: 04/30/2005
	Sun Mon Tue Wed	Thu Fri Sat	
	5 6 7 8	9 10 11	
	12 13 14 15	16 17 18	
	19 20 21 22	23 24 25	
	26 27 28 29	30 31	Initialized Notirealized

SEAFLUX 2010

March 17-1

Boulder, CO

NOAA's National Climatic Data Center

LandFlux Example

Selected Site: Bondville- Illinois (AmeriFlux)

SURFA Example

Comparisons of SST and Air Temp for Oct 2008:

ECMWF – green; DWD – blue; Buoy – red dots.

Chris Fairall

SUMMARY

NCDC Surface Flux Related Products:

- SST: Reynolds OI SST daily, global ¹/₄° gridded; 1-10 km is in development
- Sea Surface Winds: 6-hourly, global ¹/₄° gridded
- Sea Surface Air Temp & Humidity (poster)
 - Turbulent Air Sea Fluxes

Product Service and Evaluation Facility:

WCRP Surface Flux Analysis (SURFA) & NOAA Climate Data Record (CDR) Office

- Central Archive: NCDC is mandated to archive weather & climate data
 - > NOAA Satellites: Stewardship by the CDR office
 - In-Situ: Ocean Reference Stations; Flux Towers; Climate Ref Network
 - NWP Centers SURFA: ECMWF, German, Japan (JMA), Meteor-France, UK
- Web based, interactive and dynamic data service, evaluation & monitoring

http://www.ncdc.noaa.gov/oa/rsad/air-sea.html

25