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CIRES/NOAA/ESRL/PSD3 Observational Data Sets
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SHEBA Site

Surface Heat Budget of the Arctic Ocean Experiment (SHEBA)

e The main SHEBA ice camp was deployed on the ice in the vicinity of the Canadian Coast
Guard ice breaker Des Groseilliers, which was frozen into the Arctic ice pack north of Alaska

from October 1997 to October 1998.

e During this period, the ice breaker drifted more than 1400 km in the Beaufort and Chukchi
Seas, with coordinates varying from approximately 74° N and 144° W to 81° N and 166° W.

Sheba Ice Station
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1997 until October 9, 1998.
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ASFG Instrumentation

e The Atmospheric Surface Flux Group (ASFG) deployed a 20-m main micrometeorological tower, two
short masts, and several other instruments on the surface located 280 — 350 m from the Des
Groseilliers at the far edge of the main ice camp.

e Turbulent and mean meteorological data were collected at five levels, nominally 2.2, 3.2, 5.1, 8.9, and
18.2 m (or 14 m during most of the winter).

e Each level had a Vaisala HMP-235 temperature/relative humidity probe (T/RH) and identical ATI
three-axis sonic anemometers/thermometers (accuracy: wind speed +0.03 m/sec; sonic temperature
+0.1°C).

e An Ophir fast infrared hygrometer was mounted on a 3-m boom at an intermediate level just below
level 4 (8.1 m above ice).

| Qphir
} hygrameter
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SHEBA Turbulent and Radiative Fluxes
only year-round turbulent flux observations over sea ice
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Monthly-mean values of (a) sensible heat flux (Hg) and (b) u. for
concurrent data at the five tower levels. Note that the warming/cooling
refers to the air, not the surface (Persson et al. 2002, JGR, 107(C10)).
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SHEBA Turbulent Fluxes — Diurnal Cycle
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The diurnal amplitudes of temperature from level 1 (1.9-3.0 m) for (a) January, March, April and May, and (b)
June, July, August, and September. Each hourly value is the monthly mean of the daily diurnal perturbation
temperature for that hour (i.e., the daily mean was subtracted) (Persson et al. 2002, JGR, 107(C10)).
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Stable Boundary Layer Regimes

According to the SHEBA data,
stratification and the Earth’s rotation
control the SBL over a flat rough
surface. Different SBL regimes are
described in terms of the Monin-
Obukhov stability parameter (z/L), the
Ekman number (Ek) that quantifies the
influence of the Earth’s rotation, and
the bulk Richardson number (Riy) that
determines the intensity of the
turbulence. These three non-
dimensional parameters govern four
major regimes (see Figure).

Figure shows a schematic diagram of the
SBL scaling regimes as functions of the
stability and height. Here z, = 2 m (level
1), EK ., = 1, Riz = 0.2. Dividing lines
between the scaling regions are sketched.

z/z1, height —»

Grachev et al. (2005), Boundary-Layer Meteorology,

116(2), 201-235.
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Turbulence Decay in the Stable ABL

Momentum and sensible heat fluxes near the critical Richardson number

1-hr medians
—O—Lewel 1
—8—Lewl 2
—4A— Lewel 3
—&O— Lewel 4
—%— Lewel 5
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Typical Turbulent Cospectra

for weakly and moderate stable (left) and very stable (right) conditions
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Typical (a) stress cospectra (1998 JD 45.4167), and cospectra of the Typical cospectra of (a) the momentum flux (JD 355.00, 21 Dec.,
sonic temperature flux (1997 JD 324.5833) for weakly and moderate 1997), and (b) the sonic temperature flux (JD 507.75, 22 May,

stable conditions . In (a) u. decreases with increasing height from 0.134 1998) in the very stable regime. In (a) the stability parameter is 3
to 0.08 m/s. Stability parameter increases with increasing height from (level 2) and 10.5 (level 3). In (b) the stability parameters increase
0.128 to 1.893. In (b) downward sensible heat flux decreases with with increasing height: 1.41, 2.05, 6.34, 8.13 (levels 2-5).
increasing height from -1.66 to -0.64 W/m? (level 1 to level 5). Stability

parameter increases with increasing height from 0.096 to 0.533.
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Typical Turbulent Spectra

for weakly and moderate stable (left) and very stable (right) conditions
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Typical raw spectra of (a) the longitudinal wind component and
(b) the sonic temperature at four levels (level 4 is missing) for very
strong stable conditions during 21 December 1997 UTC (1997 YD
355.00). For data presented here the stability parameters at levels
2, 3,and 5 are 3, 10.5, and 116.3 (sensible heat flux is missing for
level 1). The bulk Richardson numbers at four levels are Rig; =
0.0736, Rig, = 0.0839, Rig; = 0.1090, and Rig; = 0.2793

Typical raw spectra of (a) the longitudinal wind component and (b) the
sonic temperature at four levels (level 3 is missing) for weakly and
moderate stable conditions during 14 February 1998 UTC (1998 YD
45.4167). Stability parameter increases with increasing height from
0.128 to 1.893, (levels 1, 2, 4, and 5). The bulk Richardson number also
increases with increasing height from 0.0120 to 0.0734 but it is still

below its critical value 0.2.
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Ekman Surface Layer
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Evolving Ekman-type spirals during the polar day observed during 3D view of the Ekman spiral for 14:00 UTC JD 507
JD 507 (22 May, 1998) for five hours from 12.00 to 16.00 UTC (local time 6 a.m.), 22 May 1998

(4:00-8:00 a.m. local time, see the legend). Markers indicate ends of
wind vectors at levels 1to 5 (1.9, 2.7, 4.7, 8.6, and 17.7 m).

Grachev et al. (2005), Boundary-Layer Meteorology, 116(2), 201-235.
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Basic M-O Similarity Equations for Surface Flux

Surface stress:

.
T = —puUW = pus

Modeling - basic equations

T = pCL. S°
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Sensible and latent heat fluxes:

H, = pcpa = —pCpU.t.
H, = pLi,ﬁ = —pL, u.q. .

Z, - surface roughness for momentum
z; - surface roughness for temperature
Z,, - surface roughness for moisture

S - surface layer wind speed

r - reference height (sometimes called z)
L - Monin-Obuhkov length

r/lL (z/L) - M-O stability parameter

Cpp=Cp, C —_ ~F— i N
D 'H”__hﬂﬁf"@ W/ L)) In(r/ 20 Hyy, (r/ L)
. .

A..
Cr.=Cn,.Cp, = =\
TPE G (zo ) (/L) ln(rf-gwh{rfﬁ)}
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Improve stability correction function in surface layer parameterizations
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Hs/U vs AO

Sensible Heat Flux/U (W-s/m3)

Sensible Heat Flux/U (W-s/m3)

- SHEBA Observations (black dots, Nov 1997 — Sep 1998)
- Model/parameterization output — colored dots
- Slope proportional to C,,
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*  Grachev et al (2007)
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H./U as a function of the vertical potential temperature gradient for
the observed SHEBA data points (grey dots). The curves are bin-
averaged curves for the observed SHEBA data (green), the Beljaars
and Holtslag (1991) parameterization (blue), and SHEBA
parameterization (Grachev et al 2007) (red). Both schemes are able
to suppress turbulent fluxes during very stable conditions. Results
also indicate that using the Grachev et al stability functions provide
a clear advantage over the BH91 functions for times with greater
stability.
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Enhanced Summertime Roughness

Meltpond and lead edges enhance roughness and drag (Cp)
- increases z,, C, and Cg, and thus H, and H,for summer and MIZ

42308 SHEBA, April 23, 1998

smooth snow-covered ice, C,
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Andreas, E. L, T. W. Horst, A. A. Grachev, P. O. G. Persson, C. W. Fairall, P. S.

Guest, and R. E. Jordan, 2010: Parameterising turbulent exchange over summer sea

ice and the marginal ice zone. Quart. J. Roy. Meteor. Soc., Accepted.
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Sea-Ice Surface Flux Scheme Based on SHEBA Data

(Andreas et al 2010)
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Arctic Summer Cloud-Ocean Study (ASCOS) Ice Camp
(87N, 5W; Aug. 12— Sep. 1, 2008)
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ASCOS Turbulent and Radiative

Fluxes
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ASCOS Roughness Lengths

(Birch 2010)

Table 5.3: Values of Cpwio and 2o messured at the open lead site.

Sector Jos type CoNwo Zo
A Open lead fice edge 2231077 57107
B Rough e 781077 3 E107?
C T foe 1. 261077 6 Leln®
B Tce fice 1581077 9lx1o—*
E Fairly rough ice 2781077 4dc10™?
F Open lead fice edge 1631077 Ldclo™
5.0x10” . . . .
® SHEBA. Main Tower
® SHEBA, Atlanta
100 to 270° lle e SHEBA, Baltimore v
Sma o 2 = SHEBA, Florid
4.0x107 | i A 1
T e SHEBA, Maui ¥
\ ¥ MIZ, Andreas st al. (1984)
\ v MIZ, Guest and Davidson (1987)
al ¥ MIZ Anderson (1987) |
\ 5 3.0x10 v MIZ, Birnbaum and Lipkes (2002)
100 to 80° l | 2701315 DN10 v v v
Larger z, / Larger z, " v
" 2.0x107 F L2
\ I L=
1.0x107 =
" L i L " 1 L 1 L
0.0 0.2 0.4 06 0.8 1.0
Ice Concentration, C
F'ig'u:c _"_“-23: z2p measurements in terms of t]_w local floe. Arrows P“':'int_i“ di“—"_‘:ti_':"u wind Figure 5.27: Summertime parameterisation for C'py1o over sea ice. The black line is a
is blowing. The cyan, magenta and black circles represent the approximate hmit of the quadratic fit (Equation 5.23) to observations from the SHEBA experiment, observations
90 % flux source area for the instruments at 3060 m, 1540 m and 5,19 m respectively. in the Antarctic marginal ice zone by Andreas et al. (1984) and observations in the Arctic

marginal ice zone by Guest & Davidson (1987), Anderson (1987) and Birnbaum & Liipkes
(2002). Original plot taken from Andreas et al. (2009). Values of C'py 1o caleulated from!
ASCOS observations have been added to the plot; rough ice at the mast site (red square),
rough ice at the open lead site (green square) and smooth ice from the open lead and
mast sites (blue square).
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Fall Transition Regimes During ASCQOS
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Sample Days — Cloud radar perspective

Melt/Storm Period (Aug. 15-16; YD228-229)
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Sample Days — Cloud radar perspective

Melt/Storm Period (Aug. 15-16; YD228-229)
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Sample Days — Cloud radar perspective

Melt/Storm Period (Aug. 15-16; YD228-229)
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Turbulent Flux Data -ASCQOS

_Median H_and t from 6 tower levels (094,404 527 819 1540 3060 m)

- 5-point running means of 10-min average data

Met Alley gata

30 T T T T T |
hs median

H, active during storms
and cold snap, quite small
during Sc regime

Wim2

-30
226 228 230 232 234 236 238 240 242 244 248
Year Day 2008 (UTC)

Met Alley gata

I
tau median ‘

1 significant during storms,
quite small during Sc
regime

Stress (N/m2)

- | | | | | | |
226 228 230 232 234 236 238 240 242 244 246
Year Day 2008 (UTC)
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Turbulent Flux Data -ASCOS

Stress (N/m2)

|
228

|
232

|
234

|
236

| |
238 240

Year Day 2008 (UTC)

| |
242 244

_and 1 estimates from Marine- mitted Radiance
- T, (downward look) and T, (horizontal look), ship-based U and q
- COARE bulk scheme, Grachev et al (2007) stability correction, Andreas (1987) z,
Met Alley gata
30 I T I I I
hs median
20 - hs MAERI
- Good match except when
o ship moves and lead
= sampled by M-AERI
-10
-20
-3826 22|8 2é0 2L|’>2 21|’>4 23|6 21|’>8 24|10 242 24|I4 246
Year Day 2008 (UTC)
Met Alley gata
| | | tau rlnedian
0.4 tau MAERI |

Good match
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Turbulent Flux Data -ASCQOS

H, estimate from M-AERI bulk technique

Met Alley gata

30 T T T
- hs median
20 ‘ hs MAERI i
: “hl MAERI L g L
10 H, as large or larger than
Y il H., esp. during Sc period.
= Sometimes out of phase
10 with H.
-20
| | | | | | | | |

-30
226 228 230 232 234 236 238 240 242 244 248
Year Day 2008 (UTC)

Met Alley gata

tau median
0.4 tau MAERI |

Stress (N/m2)

_01 | | | | | | | | |
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Year Day 2008 (UTC)
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Daily Surface Energy Budget — end of summer melt

Melting during storm

During Sc period, T near

period (F,. > 0) freezing point of seawater and
ascos suface e NO surface energy flux (Fe; =~ 0)
30 I I T T I I T T | T I T
20+~ -

10

Wm'2ordeng5

-50

-60

-70
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

Year Day 2003 (UTC)

H..r, Significant
compared to
SWnet+ I—anet

o increased
from 0.72-0.83
-significant
reduction of
Sanet
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Questions?
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