The Development of a

System to Analyze and
Compare Colonial Era
Weather Data to more
Modern Data to Investigate Climate Change

By Marni Wasserman

Motivation

- High School Research Program
- Statistics/Actuarial Science
- Looked on Society of Actuaries website to see research being done
- Contacted Mr. John Buchanan, Climate Change Student Outreach Chairperson
- Formulated Project

Purpose

- Determine effectiveness of using colonial era weather data
- Create easily adaptable model for comparing data
- Produce data that can be used in the public domain for future studies

Ways of Collecting Past Temperature

- Temperature proxies: tree rings, ice core isotopes, coral reefs, bore holes, lake/ ocean sediment
- relative temperatures
- verify colonial temperature readings

Phineas Pemberton

- Member of American Philosophical Society; "citizen scientist"
- Kept continuous record of temperature and weather conditions from 1746-1776
- Readings taken 2 miles west of Philadelphia
- Latitude: 3957' Longitude: 75¹0’

Courtesy of APS Library

Climate Change Debate

- Human activity versus Natural
- Human Activity Causes - increase in greenhouse gases
- "Most of the observed increase...very likely due to anthropogenic greenhouse gas concentrations" (IPCC AR4, 2007)
- Natural - interglacial period, increase in solar activity (Tanneeru, 2008)
- Only 5\% of increase in temperature is due to human activities (Pinto, 2007)

Possible Effects of Increase in Temperature

- Rising sea levels
- Glacier and polar ice melting
- Change in weather patterns
- More intense precipitation events
- Decrease in agricultural stability
- Extinction, endangerment and changing ranges of species
- Increase of disease vectors

Data Analyzed

- All from Philadelphia, PA
- (39 ${ }^{\circ} 57^{\prime}$ latitude and $75^{\circ} 00^{\prime} 20^{\prime \prime}$ longitude)
- 1759 (digitized Pemberton data)
- 1767-1770 (digitized Pemberton data)
- 1878-1882 (NOAA)
- 2005-2009 (NOAA)

Analysis

- Temperature mean over 5 year periods in each century
- Temperature mean for January, February, July and August, over the 5 year periods in each century
- Analyzed relationship between carbon dioxide levels and temperature change

Summary of Years

Figure 1 - Monthly Mean Temperature in Philadelphia, PA

Temperature Differences

Figure 2 - Temperature Difference Between Centuries in Philadelphia, PA

Yearly Stats

Table 1- Mean Temperature for 5	
Year Averages	
Yearly Philadelphia	Mean
1700	56.1
1800	59
2000	65.4

Table 2 - T-test Values

Yearly Philadelphia	p-value	Significant
1700s vs. 1800	0.6105	no
1700s vs. 2000	0.1647	no
2000s vs. 1800	0.2313	no

Temperature by Month

Figure 4 - Mean Temperature For Certain Months in Philadelphia, PA

Monthly Stats

Table 3 - Monthly Means for 5 Year Averages

Monthly Philadelphia	January		February		July			August	
	Mean	95%							
1700	38.2	38.2 ± 1.72	40.5	40.5 ± 1.83	77.4	77.4 ± 0.91	76.5	76.5 ± 0.92	
1800	33.1	33.1 ± 1.47	36.8	36.8 ± 1.69	82.9	82.9 ± 0.93	78.6	78.6 ± 0.92	
2000	42	42 ± 1.74	43.5	43.5 ± 1.87	89	89 ± 1.06	85.7	85.7 ± 0.95	

Table 4 - Monthly T-test Values

Monthly Philadelphia	January		February		July			August	
	p-value	significant	p-value	significant	p-value	significant	p-value	significant	
1700s v1800	0.1362	no	0.0109	yes	<0.0001	yes	0.0003	yes	
1700s v2000	<0.0001	yes	0.014	yes	<0.0001	yes	<0.0001	yes	
2000s v1800	<0.0001	yes	0.0001	yes	<0.0001	yes	<0.0001	yes	

Days above 80, 85, $90^{\circ} \mathrm{F}$

Figure 5 - Comparison of Number of Days in the 1700s, 1800s and 2000s Over 80, 85 and $90^{\circ} \mathrm{F}$

Daily Comparisons

Figure 6 - Number of days per month in which the later time period was warmer than the earlier time period

Homogenization

- Most raw data is un-homogenized
- different equipment
- different locations,
- different times
- Accounted for by looking at 10 neighboring weather stations

Homogenization Graph

Figure 8 - Raw vs. Adjusted - West Chester PA Anomalies Source: NOAA - Russell Vose email 10/27/2010

Carbon Data

Comparison of Temperature Anomalies to CO_{2} Levels

Pemberton/West Chester PA (Unhomogenized)

Figure $7-\mathrm{CO}_{2}$ Source: NOAA - James Butler email 9/27/2010

Conclusion

- Overall temperature has increased since 1759
- In this sample (unadjusted), between 30-40\% of the raw increase occurred in the 1800s vs. the 2000s
- Temperature in each month did not increase steadily from 1759 to 2009
- Winter months increased less than summer
- Variations from average now more extreme
- Currently many more days over 80, 85 and $90^{\circ} \mathrm{F}$

Improvements

- Use 20-30 year baseline averages for recent climate indications
- Adopt standard climatological statistical methods
- Use Aggregated Greenhouse Gas Index rather than CO_{2} component only

Future Research

- Analysis of pressures and conditions
- Compare results to other well established studies
- Look in other historical societies to see where this data is located
- Join scientists and students to expand database of usable data

Acknowledgements

- Third Atmospheric Circulation Reconstructions over the Earth Workshop (NOAA, NASA, NSF and U.S. CLIVAR)
- Mr. John Buchanan, Climate Change Student Outreach Chairperson for the Casualty Actuarial Society
- Mr. Gilbert Compo, Climate Diagnostics Center NOAA
- Eric Freeman, National Climactic Data Center
- Mr. Richard Kurtz - Teacher
- Administration and Faculty, Commack Union Free School District

Appendix

West Chester - Summary of Years

Figure 4 - Monthly mean temperature in West Chester, PA

West Chester - Temperature Difference

Figure 5 - Temperature difference between centuries in West Chester, PA

West Chester Yearly Stats

Yearly West Chester	Mean	95\% Confidence Intervals
1700	56.1	56.1 ± 10.08
1800	58.3	58.3 ± 10.13
2000	64.3	64.3 ± 9.89

Yearly West Chester	p-value	hypothesis	significant
1700s v 1800	0.6058	null	no
1700s v 2000	0.183	null	no
2000s v 1800	0.7517	null	no

West Chester - Yearly Box Plot

West Chester - Temperature by Month

Figure 6 - Mean temperature for certain months in West Chester, PA

West Chester Monthly Stats

Monthly West Chester	January		February		July			August	
	Mean	95%							
1700	34.4	34.4 ± 1.74	40.4	40.4 ± 1.77	77.4	77.4 ± 0.88	76.5	76.5 ± 0.97	
1800	33.4	33.4 ± 1.5	37.1	37.1 ± 1.64	81.8	81.8 ± 0.95	79.2	79.2 ± 0.92	
2000	41.7	41.7 ± 1.77	42.5	42.5 ± 1.78	85.7	85.7 ± 0.87	85.4	85.4 ± 1.04	

	January			February			July			August		
Monthly West Chester	p -value	hypothesis	significant	p-value	hypothesis	significant	p-value	hypothesis	significant	p-value	hypothesis	significant
1700s v 1800	0.1936	null	no	0.0071	null	no	<0.0001	alternative	yes	0.0003	alternative	yes
1700s v 2000	<0.0001	alternative	yes	0.0591	null	no	<0.0001	alternative	yes	<0.0001	alternative	yes
2000s v 1800	<0.0001	alternative	yes	0.0002	alternative	yes	<0.0001	alternative	yes	<0.0001	alternative	yes

