Long Term Trends of Tropical Pacific Sea Surface Temperature in SODA 1871-2008

Chunxue Yang Benjamin Giese Department of Oceanography Texas A&M University

Cane-Zebiak model

Slab-Ocean models

Fully Coupled GCM

HadISST (1880-2005)

ERSST (1880-2005)

El Nino-like Pattern Response

- Weakening of atmosphere circulation (Walker Circulation) (Held and Soden, 2006; Vecchi and Soden, 2007).
- Reduction of equatorial wind stress due to weakening of atmospheric circulation, results in decline of Tropical Pacific SST gradient (Knutson and Manabe, 1995).

La Nina-like Pattern Response

- Smaller temperature change over eastern tropical Pacific due to upwelling results in enhanced tropical SST gradient. (Clement et al., 1996; Cane, et al., 1997)
- Strengthening of tropical easterly winds due to increasing tropical SST gradient brings more cold water from deep ocean through upwelling and further cooling SST.

HadSST2

Air Temp

HadISST1

Minobe SST

ERSST

Kaplan

Deser, et <u>al.</u>, 2010

SODA 2.2.4

- Numerics
 - Parallel Ocean Program
- Domain
 - Global (including Arctic)
- Resolution

- 0.4x0.25 average on eq. (~25km x 25km midlat) horizontal
- 40 levels: 10m near surface to 450m in deep ocean
- Winds
 - 20CRv2 daily stress 1871 2008
- Heat and Salt fluxes
 - Bulk formulae using 20CRv2 daily variables
- SODA Data Assimilation

– WOD09 Hydrographic and ICOADS 2.5 SST data

Linear trend of SST in SODA 2.2.4

Linear Trend of Temperature on the Equator

Linear Trend of Wind Stress

Pacific Subtropical Cell (STC)

Previous Studies about the STC

McPhaden and Zhang (2002)

McPhaden and Zhang (2004)

Previous Studies about the STC

 With numerical models, the STC starts to be weaken in the 1970s, but rebounds in 1990s. (Lee and Fukumori, 2003; Captondi et al., 2005; Cheng et al. 2006)

Results from assimilations data GECCO and SODA are consistent with results from observations and numerical models (Schott et al., 2007; Schott et al., 2008)

Vertical Profile of Meridional Velocity

Transport of the STC at 9°S and 9°N

9°S

9°N

Convergence transport of the STC across 9°S/9°N

Interior:10.75Sv/century, WBC:-1.87Sv/century, Total:8.87Sv/century Bars indicate observations in McPhaden and Zhang (2002, 2004)

Transport of the STC vs Tropical SST Gradient

Conclusions

- Significant cooling trends over central tropical Pacific.
- Wind stress over tropical Pacific is strengthening, which will affect tropical ocean circulation.
- Strengthening of the STC, due to change of wind stress, is consistent with cooling of SST over central tropical Pacific Ocean through enhanced equatorial upwelling.

Thank You!