

2011 Atlantic Hurricane Activity and Outlooks A Climate/ Historical Perspective

Gerry Bell

NOAA Lead Seasonal Hurricane Forecaster

Climate Prediction Center/ NWS

<u>Related Publications:</u> •Bell and Chelliah (JCLI 2006, 15 Feb), Chelliah and Bell (JCLI, 2004) •State of the Climate (BAMS May/June issues 1999-2011) •www.cpc.ncep.noaa.gov/products/hurricane: Seasonal summaries/ outlooks

2011 Atlantic Named Storms to Date

Official CPC product made in collaboration with NHC/NWS and HRD/NOAA

Ex				
70%		Observed		
Named Storms	12-18	Named Storms	14-19	16
Hurricanes	6-10	Hurricanes	7-10	4
Major	3-6	Major	3-5	3
Hurricanes		Hurricanes		C
ACE (% median)	105-200	ACE (% median)	135-210	109%

Model Summary For Outlook Issued August 4th

Mindent of Con-	Model	Named Storms	Hurricanes	Major Hurricanes	ACE (% of median)
Statistical -	Regression Climate Analogue	14-18 14-19	7-10 7-11	3-5 3-5	145-185 157-245
Statistical- Dynamical Hybrid	CFS: Lo-Res (T62)	16-18	9-11	4-5	165-224
Dynamical -	CFS: Hi-Res (T382) GFDL ECMWF EUROSIP	15-25 15 14-19 18-25	5-8 11 3-8 -	-	89-161 - 106-258 74-143
	UKMET	11-18	-	-	77-186

 $ACE = \sum_{NS} \sum_{T} V_{max}^{2}$ for all named storms while at least TS strength (4x daily).

•Step-Function characterizes transitions between high-and low activity eras. (No trends during individual eras).

•2011Outlooks reflect expected continuation of high activity era.

Examine Multi-Decadal Fluctuations in ACE Subdivide Atlantic Basin into Three TS Formation Regions

Named storms that form in MDR (Red):

- 1. Produce 75+ % of ACE during high activity eras.
- 2. Explain entire multi-decadal variability in ACE, hurricanes, and major hurricanes.

Strong climate predictors exist because they directly influence conditions/ activity within the MDR.

ACCENT ATMOSPHERIC PROVIDENCE PRO

NOAA Atlantic Seasonal Hurricane Outlook Verification

WMO baseline forecast = Preceding 5-yr avg. $\pm 1\sigma$ calculated from preceding 30-yrs

•NOAA's outlooks have much higher skill than WMO baseline (no-skill) forecast.

•Conditional Rank Probability Score addresses forecast accuracy and spread.

Expected Conditions During Aug.-Oct. 2011

Warmer SSTs Reduced Wind Shear Lower Surface Pressure (red area)

Higher Pressure in Upper Atmosphere

•This inter-related set of conditions typifies active seasons during a high activity era, and produces increased activity in MDR.

•August 2011 outlook based on prediction of three climate factors: ongoing active Atlantic phase of tropical multi-decadal signal, possible La Niña, and exceptionally warm Atlantic SSTs.

SST Anomaly (°C): June-August 2011

ERSST V.3b Data

Aug-Oct Tropical Multi-Decadal Signal Phase shown for Active Atlantic Hurricane Era

•EOF analysis applied to 5-yr running ASO 200-hPa velocity potential anomalies (From Bell and Chelliah, JCLI 2006).

•This climate pattern accounts for many inter-related regional atmospheric anomalies known to favor increased MDR activity.

200-hPa Streamfunction Anomalies

Tropical multi-decadal signal

Stronger upper-level ridges in both hemispheres, easterly wind anomalies across tropical Atlantic.

200-850 hPa Vertical Wind Shear (m/s)

3-celled pattern shows large-scale differences in vertical wind shear between high- and lowactivity era.

BUT... We've Only Had 4 Hurricanes!!!

Historical Scatter Plot: Seasonal Named Storms vs Hurricanes

Normally expect 7-9 hurricanes for 16 named storms, with 6-7 forming from named storms that originated in MDR.

Why Only 4 Hurricanes? Reason #1 Seen in OLR Anomalies (W m⁻²)

over Indonesia and western Indian Ocean.

Precipitable Water (Inches), 1000-hPa Wind Vector (Last 30 Days)

Summary

Skill from seasonal outlooks comes from predicting climate factors that affect conditions in the MDR—Dynamical models critical for ENSO, SST forecasts.

Inter-related set of atmospheric and oceanic conditions during 2011 are consistent Atlantic high activity era and very warm Atlantic SSTs.

 To date, fewer hurricanes than expected: I have speculated on two causes.
1. Strong positive phase of Indian Ocean Dipole- A climate factor-Affects west African monsoon circulation, reduced southerly transport of deep tropical moisture into southern MDR.

2. Strong high-pressure over central Atlantic- a weather/ synoptic factor-Higher pressure results in dry subsiding air in MDR, unfavorable for hurricane formation

