

CWRF Downscaling Enhancement on Seasonal-Interannual Climate Prediction

2011 Oct 4

86th Annual Workshop for Diagnostics & Prediction

Xin-Zhong Liang

Department of Atmosphere & Ocean Science Earth System Science Interdisciplinary Center University of Maryland, College Park

NARRCWRF Downscaling Seasonal
Climate Prediction over the U.S.

Deciduous Broadleaf Forest
Evergreen Broadleaf Forest
Evergreen Needleleaf Forest
Mixed Forest
Water Bodies
Wooded Wetland
Barren or Sparsely Vegetated
Wooded Tundra
Mixed Tundra

Ensemble Global Forecast System ⇒ICs, SSTs, LBCs

NOAA CFS NASA GEOS

OP DASs

NCEP

ECMWF

⇒ICs

Bias corrections

OP CGCMs ⇒SSTs NOAA GFS NCAR CAM IRI ECHAM

→LBCs

CAM

120W 110W 100W

CAM PR Jun 2004

CAM PR May 2004

90W

80W

20N 110W 100W 90W

GPCP PR Jul 2004

40N

30N

80W

CFS PR Jul 2004

CAM PR Jul 2004

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CAM PR Jun 2004

GPCP PR Jul 2004

100E

90E

GPCP PR Jun 2004

40N

30N

20N

10N

110E

120E

130E

CFS PR Jul 2004

CAM PR Jul 2004

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

NCEP/AMIP II vs ECMWF-Interim Reanalysis

Recent Advances Comparing with Other RCMs

Ability to reproduce observations

- All driven by the same reanalysis
- Result comparison on
 - Seasonal variations
 - Interannual anomalies
 - Extreme events

Rainfall (summer 1993)

OBS

5

CWRF has made significant improvements.

T2m Bias (summer 1993)

NARCCAP

Surface Temperature Biases

All driven by NCEP/DOE AMIP II Reanalysis

NARCCAP Surface SW_d Biases

All driven by NCEP/DOE AMIP II Reanalysis

Physics Representation

Evaluating Skill under Correct Forcing Conditions

CWRF Physics Options

http://cwrf.umd.edu

Choi 2006; Choi et al. 2007, 2011; Choi and Liang 2010; Yuan and Liang 2010; Liang et al. 2010d

Illinois Soil Moisture Simulations Driven by NARR

Yuan and Liang 2011 (J. Hydrometeorology)

CWRF Seasonal-Interannual Climate Prediction

Nested with NOAA Operational CFS

Yuan, X., and X.-Z. Liang, 2011: Improving cold season precipitation prediction by the nested CWRF-CFS system. *Geophys. Res. Lett.*, **38**, L02706, doi:10.1029/2010GL046104.

CWRF Improves Seasonal Climate Prediction

a) Spatial frequency distributions of root mean square errors (*RMSE*, mm/day) predicted by the CFS and downscaled by the CWRF and **b**) CWRF minus CFS differences in the equitable threat score (*ETS*) for seasonal mean precipitation interannual variations. The statistics are based on all land grids over the entire inner domain for DJF, JFM, FMA, and DJFMA from the 5 realizations during 1982-2008. *From* Yuan and Liang 2011 (GRL).

CWRF Downscaling Seasonal Climate Prediction: Extreme Events

Observed (OBS), CFS-predicted, and CWRF-downscaled: **a**) number of rainy days, **b**) maximum dry spell length (day), **c**) daily rainfall 95th percentile (mm/day), and **d**) difference in number of rainy days averaged between the El Niño (warm) and La Niña (cold) events for JFM during 1983-2008.

U.S. Land Seasonal Precipitation Spatial Pattern Correlation

CWRF downscaling is much more realistic than **ECHAM**

In collaboration with Dave DeWitt of IRI

Optimized Physics Ensemble Increasing predictive skill Quantifying uncertainty

Optimized Physics-Ensemble Prediction

Optimized Physics Ensemble Prediction of Precipitation In summer 1993

The physics ensemble mean substantially increases the skill score over individual configurations, and there exists a large room to further enhance that skill through intelligent optimization.

Spatial frequency distributions of correlations (*top*) and rms errors (*bottom*) between CWRF and observed daily mean rainfall variations in summer 1993. Each line depicts a specific configuration in group of the five key physical processes (*color*). The ensemble result (ENS) is the average of all runs with equal (Ave) or optimal (OPT) weights, shown as *black solid* or *dashed* line.

CWRF improves predictions at regional-local scales

CWRF includes advanced physics schemes crucial to climate

CWRF couples essential components directly linking to impacts

CWRF builds upon a super ensemble of alternative physics schemes for skill optimization and uncertainty quantification

CWRF has greater capability & better skill than CMM5, WRF...

CWRF downscaling improves CFS precipitation predictions