On the connection between low-frequency modulation of large-scale weather regimes and springtime extreme flooding over the Midwest of the United States

Andrew W. Robertson¹, Yochanan Kushnir², Upmanu Lall³ and Jennifer Nakamura²

¹ International Research Institute for Climate and Society (IRI), Columbia University, New York ² Lamont-Doherty Earth Observatory, Columbia University, New York

³ Department of Earth and Environmental Engineering, Columbia University, New York

Outline

- Analysis of daily circulation types and rainfall states for the March–May season, over the Midwest US
- Connection between weather types and basin-scale 10-year flood events
- Connection between weather types and low-frequency modes: any potential predictability?

Composite anomalies 1-day prior to 20 extreme flooding events in the 20th Century

1000–600mb Moisture Flux & Divergence

SLP & 850mb Temperature

Hidden Markov Model fit to CPC Unified Precip, MAM 1979-2005, [88W-84W, 36-40N]

Transition probabilities

to state ...

	1	2	3	4	5	6
1	27	48	12	10	2	1
2	5	33	16	35	2	9
3	11	11	33	6	13	26
4	10	З	7	30	15	34
5	49	11	5	10	20	5
6	6	1	4	4	30	56

cycle: 1->2->4->6->5->1

Composites of 700mb geopotential anomalies for each HMM rainfall state

WET STATE

T~7 days

C.I. = 20 gpm

A broader perspective: Cluster analysis of 700-mb geopotential height fields

- NNRP1 700-mb geopotential height fields [30-50N, 105W-75W]
- March–May season, 1961–2011
- K-means analysis

Six-cluster solution: 700mb Geopotential Height Anomalies

With vertically-integrated moisture flux anomaly composites superimposed

C.I. = 20 gpm

Z-500 anomaly composites

C.I. = 50 gpm

CMORPH Precipitation Composites (2005–2011)

C.I. = 2 mm/day

Clusters active during 5 major flooding events

Circulation type transition matrix

to type ...

from type		1	2	3	4	5	6
	1	53	10	0	13	14	10
	2	3	60	16	0	12	9
	3	1	12	78	1	7	1
	4	15	0	0	63	13	8
	5	4	15	9	4	59	8
	6	15	16	0	11	8	51

Potential vorticity anomalies on 315k isentrope

C.I. = 0.2 PVU

1. Interannual modulation of circulation type frequency?

Association with ENSO

2. Role of intraseasonal oscillations in extreme flooding events?

20-Event Composite "Dipole Index"

20-event composite mean (solid), median (dashed), and 25th to 75th percentile spread (shaded grey) of days (-59 to 5, where 0 is the flood date) vs. percentile relative to a Jan-May 1901-2008 climatology) of 700 mb height high minus low centers at day -1.

Multi-Taper Spectrum of Dipole Index

Composite anomalies of Z700 maps keyed to 20–30-day signal in Rockies mountain torque

Lott et al. (1995)

Conclusions

- Extreme flood dates are associated with dipolar geopotential height anomalies with nodal line near 70–80W
- HMM rainfall states show this is associated with synoptic wave propagation
- Circulation types show that 10-day build-up to flood dates are associated with two patterns: (1) the synoptic dipole, (2) a deep trough over E Canada
 - Both patterns occur preferentially during La Niña
- Flood events appear to be associated with intraseasonal oscillations, with significant spectral peaks near 14, 25 and 41 days