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a b s t r a c t

The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years
with the availability of climate model simulations contributed to the assessment reports of the Intergov-
ernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared
understanding of critical challenges for such applications are essential for developing robust projections
of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate
impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for
these applications, and identifies priority developments that could improve current projections. Under-
standing of the climate system and its representation within climate models has progressed to a point
where many climate model outputs can now be used effectively to make LMR projections. However,
uncertainty in climate model projections (particularly biases and inter-model spread at regional to local
scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms
underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A vari-
ety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and
dynamical downscaling can ameliorate some limitations, though the assumptions underlying these
approaches and the sensitivity of results to their application must be assessed for each application. Devel-
opments in LMR science that could improve current projections of climate impacts on LMRs include
improved understanding of the multi-scale mechanisms that link climate and LMRs and better represen-
tations of these mechanisms within more holistic LMR models. These developments require a strong
baseline of field and laboratory observations including long time series and measurements over the broad
range of spatial and temporal scales over which LMRs and climate interact. Priority developments for
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IPCC-class climate models include improved model accuracy (particularly at regional and local scales),
inter-annual to decadal-scale predictions, and the continued development of earth system models capa-
ble of simulating the evolution of both the physical climate system and biosphere. Efforts to address these
issues should occur in parallel and be informed by the continued application of existing climate and LMR
models.

Published by Elsevier Ltd.
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1. Introduction

Primary production by microscopic phytoplankton within the
ocean ecosystem rivals total terrestrial production (Field et al.,
1998) and supports a diverse array of organisms within the oceanic
food web. These ‘‘Living Marine Resources’’ (LMRs) encompass a
broad range of fish, invertebrates, mammals, plants and reptiles that
have diverse interacting life histories, habitat needs, and ecologies.
Many LMRs are commercially harvested, providing valuable food re-
sources to human populations and a diversity of other economically
significant products. Other LMRs greatly enhance local economies
through recreation and tourism. All LMRs play a role in establishing
and maintaining the structure and function of marine ecosystems,
though some LMRs are now threatened by intense harvesting, pollu-
tion, and habitat loss (Baillee et al., 2004; NOAA, 2006).

In the past, LMR management has often been based on the
assumptions that exploitation is the dominant factor shaping mar-
ine populations and that the ecosystem (including physical, chem-
ical, and other biological constituents) is in long-term equilibrium.
These assumptions resulted in management strategies that empha-
sized population management through adjustments in harvest
rates. A multitude of studies, in contrast, have identified strong re-
sponses of LMRs to climate variability (e.g., Lehodey et al., 2006
and references therein) and evidence for responses to anthropo-
genic climate change is accumulating (Brander, 2010).1 Excluding

environmental factors linked to climate in LMR management has
led to the misspecification of harvest controls, contributing to the
diminished state of many exploited LMRs (Keyl and Wolff, 2008).
For LMR management strategies to be effective in a variable and
changing climate, they must more directly consider how climate is
impacting LMR dynamics.

Reliably predicting the impacts of future climate on LMRs re-
quires both an understanding of the mechanisms through which
climate acts and skillful predictions of climate change and variabil-
ity. Climate model simulations contributed to the assessment re-
ports of the Intergovernmental Panel on Climate Change (IPCC)
are a primary means of analyzing climate dynamics and making
projections of future climate change. Numerous examples of appli-
cations of IPCC-class climate models for assessing the impact of cli-
mate change and variability on LMR dynamics have appeared in
recent literature (see Section 4), suggesting that IPCC-class climate
models have utility for LMR prediction. However, these studies
have also revealed critical challenges that often stem from the
need to reconcile information from climate models designed to
capture large-scale characteristics of the global climate system
with the dynamics of individual or multiple LMRs, often at regional
spatial scales and time scales of a few decades or less.

This paper is the product of the workshop ‘‘Applying IPCC-class
Models of Global Warming to Fisheries Prediction’’ that was held
June 15–17, 2009 at Princeton University.2 The development of
effective and innovative applications of IPCC-class climate models

1 Detailed definitions of all climate-related terms can be found in the glossary of
the IPCC 4th Assessment Report (Baede, 2007) which can be found at http://
www.ipcc.ch/.

2 More information on the workshop, including a list of attendees and presenta-
tions, can be found at http://www.gfdl.gov/fisheries-and-climate-workshop.
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to LMR science and management requires greater shared under-
standing of the challenges faced by climate and LMR scientists. This
paper pursues this broad aim by assessing present approaches for
generating projections of climate impacts on LMRs using IPCC-class
climate models, recommending practices that should be followed in
such applications, and identifying priority developments that could
improve current projections. The salient aspects of LMR dynamics
and models (Section 2) and climate system dynamics and models
(Section 3) are presented first with an emphasis on those aspects
that shape applications of climate models to assessing the impact
of climate change and variability on LMR dynamics. Specific case
studies are then described to further elucidate the strengths and lim-
itations of present approaches (Section 4). The case studies are fol-
lowed by a discussion of recommended practices (Section 5) and
priority developments (Section 6) before concluding remarks are gi-
ven (Section 7).

2. Dynamics and prediction of Living Marine Resources

While many correlations between LMRs and climate variables
have been documented, they often fail over time (Myers, 1998).
This limits the utility of such relationships for assessing the im-
pacts of climate change and variability on LMR dynamics. In-
creased mechanistic understanding of the climate/LMR processes
that underlie such correlations is needed for more reliable predic-
tions. The complexity of LMR dynamics and observational limita-
tions pose formidable challenges to achieving this goal. This
section provides a synthesis of LMR responses to environmental
change and a discussion of the utility of LMR observations and
models for assessing the impacts of climate on LMR dynamics.

2.1. The response of Living Marine Resources to environmental change

Environmental conditions affect LMRs in a wide variety of ways.
Vital rates such as growth, reproduction, consumption, and respi-
ration are mediated by temperature and other climate-influenced
factors such as salinity, oxygen, and alkalinity (Koster et al.,
2003; Brander, 2010; Drinkwater et al., 2010a). Biogeographical
distributions and migration patterns shift in response to climate-
related changes in habitat suitability (Jensen, 1939; Frank et al.,
1990; Murawski and Mountain, 1990; Cheung et al., 2009; Nye
et al., 2009). Shifts in the timing of seasonal changes can alter
life-history dynamics (Edwards and Richardson, 2004; Henson
et al., 2009a; Koeller et al., 2009). Climate impacts on LMRs extend
to all organisms within the marine food web and can generate
notable indirect effects on LMRs through trophic or shared-re-
source interactions (Stenseth et al., 2002; Richardson and Scho-
eman, 2004). Lastly, the food web for many LMRs often includes
significant commercial, recreational and subsistence harvesting
by humans. A growing number of studies suggest that ecosystems
become more sensitive to climate impacts when they are heavily
exploited (Brander, 1995; Hsieh et al., 2006), and strong connec-
tions between LMR dynamics and humans create linkages between
LMRs and a broad set of social and economic factors (e.g., Mullon
et al., 2009).

The responses of LMRs to the array of interactions described
above often are neither gradual nor linear. Many organisms have
threshold responses and can be highly sensitive to the short peri-
ods of environmental extremes that are far from average condi-
tions (Glynn, 1984). Abrupt shifts in the structure and function of
ecosystems among otherwise persistent states, often referred to

Fig. 1. Time-horizontal spatial scale diagram illustrating the range of scales over which environmental variability and biological processes occur and interact. Source: Dickey
(2003)
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as regime shifts, have been noted across major ocean basins
(Steele, 1998; Hare and Mantua, 2000; deYoung et al., 2008; Over-
land et al., 2008). Such shifts can have profound impacts on LMRs,
the roles they play within ecosystems, and the economies that they
support.

Connections between environmental variations and marine
populations occur across a large range of interacting spatial, tem-
poral and organizational scales (Haury and McGowan, 1978,
Fig. 1; Dickey, 2003). Identifying fundamental scales on which pat-
terns emerge, how these patterns change across scales, and the
linkages between processes that unfold on different scales repre-
sent key challenges for assessing the impact of climate on LMR
dynamics (Levin, 1992). Metagenomic studies have inspired efforts
to link suborganismal scales with an understanding of the distribu-
tion of organisms. At the next scale, the ability of organisms to
encounter their prey (Rothschild and Osborn, 1988; Kiorboe,
2008), successfully fertilize eggs (Levitan and Sewell, 1998) and
send and receive chemical signals (Zimmer and Butman, 2000)
are affected by hydrodynamic processes that occur at the scale of
individual organisms. At intermediate scales, tens to hundreds of
kilometers from days to seasons, productivity and community spe-
cies composition can be influenced by submesoscale and meso-
scale ocean features such as fronts, eddies, and the strength of
upwelling structures (Bakun, 1996, 2001; Ji et al., 2008; Boersma
et al., 2009; e.g., Richardson et al., 2009). At longer time scales
and broader spatial scales, inter-annual to decadal fluctuations in
the climate system occurring across thousands of kilometers such
as El Niño, the North Atlantic Oscillation, and the Pacific Decadal
Oscillation may affect broad regional and ocean basin-scale varia-
tions of LMR populations (e.g., Mantua et al., 1997; Schwartzlose
et al., 1999; Hollowed et al., 2001; Alheit et al., 2005). At the largest
scales, variations resulting from global-scale climate changes
occurring over centuries come into play. Linkages between evolu-
tionary change and ecological processes provide a unifying frame-
work for understanding processes occurring across all these scales.

Many LMRs have complex life histories that include morpholog-
ically distinct stages of often vastly different sizes that occupy dif-
ferent habitats. Survival during early life stages (eggs, larvae, and
juveniles) may be sensitive to environmental fluctuations with
time scales of days to weeks and spatial scales of meters to kilome-
ters (Rothschild, 1986; Fuimann and Werner, 2002). The survival of
adult stages, in contrast, may be more sensitive to environmental
signals that are coherent across ocean basins and multiple years.
The multi-year nature of LMR life cycles can provide a buffer be-
tween environmental variations and population responses and im-
pose a lag between the initial influence of environmental
perturbations and its most observable impacts (Ottersen et al.,
2006), further complicating efforts to define mechanistic linkages.

While LMR dynamics reflect the integration of environmental
information across a broad range of spatial and temporal scales,
many studies suggests that some scales are more important. A dis-
proportionately large amount of harvested LMRs are caught in
coastal regions (Pauly and Christensen, 1995; FAO, 2007). Nearly
half of marine fish landings in 2004 were caught within 185 km
(100 nautical miles) of shore in waters less than 200 m in depth
which accounted for <7.5% of the ocean area (Nellemann et al.,
2008). Changes in many of these LMRs have been linked to global
and basin-scale climate variations, but improved mechanistic
understanding of this linkage requires resolving the manifestation
of global and ocean basin-scale dynamics on shelf-scale processes.
Survival during early life stages is often a major source of variabil-
ity for LMRs (Rothschild, 1986), and many eggs, larvae and juve-
niles rely upon near-coastal regions (e.g., inlets, estuaries and
rivers) and can be particularly sensitive to the timing of seasonal
changes (e.g., Hjort, 1914; Cushing, 1990). Lastly, while under-
standing the century-scale implications of climate change for LMRs

is of great scientific and economic interest, reliable projections on
inter-annual to decadal time scales are essential for ensuring the
sustainable harvest of LMRs and for enabling dependent industries
and communities to adapt to changes in LMR productivity and
distribution.

2.2. Living marine resource observations

The detection and diagnosis of climate impacts on LMRs re-
quires observations over the relevant range of spatial and temporal
scales. Consistent observations over several decades are often re-
quired to differentiate the effects of climate variability from those
of climate change (e.g., Henson et al., 2009b, Section 3.1.2). Obser-
vations over a wide spectrum of spatial and temporal scales may
be required to understand the mechanisms underlying LMR
changes (i.e., Section 2.1, Fig. 1). Meeting these observational chal-
lenges requires committed maintenance of existing time series,
continued development of LMR observing technologies capable of
resolving LMR/climate interaction over a broader range of scales,
and the preservation and use of unique historical, archeological
and paleoecological measurements that may extend LMR/climate
records over multiple centuries.

LMR observations for harvested species can be divided into two
broad types. Fishery-dependent data collected during commercial
and recreational harvests, and fishery-independent data generally
collected during scientific research surveys. Note that while these
classifications refer specifically to harvested fisheries, most of the
dataset properties discussed below can be generalized to other
harvested and non-harvested LMRs (e.g., invertebrates, marine
mammals).

The duration of fishery-dependent data varies widely by fishery.
Traps for bluefin tuna in the Mediterranean Sea, for example, pro-
vide fishery catch records stretching back several centuries (Ravier
and Fromentin, 2001). Long-standing industrialized commercial
fisheries routinely have several decades of commercial catch re-
cords. Less established commercial and subsistence fisheries, in
contrast, can have far more limited information. Fishery-depen-
dent data generally includes stock-specific catch numbers and bio-
mass and, in many cases, biological and oceanographic information
gathered by observers aboard fishing vessels and portside sam-
pling (e.g., Keller et al., 2008). Catch biomass may include both
commercially harvested and incidentally captured stocks. Addi-
tional information on limited samples of landed animals may in-
clude sex ratios, size frequencies, diet, maturity and fecundity.
Many countries have also initiated underway vessel monitoring
systems and acoustic echo-integration methods to provide contin-
uous information on the spatial distribution of LMRs. While fish-
ery-dependent data provides invaluable information to LMR
science and management efforts, the spatial sampling pattern, fre-
quency, and fishing techniques used may change several times
within a fishery-dependent time series. Changes can occur due to
new technology, government management actions to restrict or in-
crease catches, and market shifts. Thus, careful study of fishery-
dependent observations is necessary to prevent false interpretation
of technological, management, or market driven changes as true
changes in the productivity, distribution and abundance of LMRs.

Scientific fishery-independent survey programs have been
established across much of the globe to address the interpretive
limitations of fishery-dependent data and to support fishery
management. Most fishery-independent surveys have carefully
designed spatial and temporal sampling strategies and use rela-
tively uniform sampling methodologies to provide a consistent
census of LMRs within a region. In some cases, surveys include
measures of diverse aspects of the exploited stock including rela-
tive abundance, weight, distribution, length, age, maturity, and
diet. Hydrographic and planktonic (e.g., chlorophyll, primary
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production, zooplankton biomass) sampling is also becoming more
common based on the early recognition that oceanographic vari-
ability can drive variations in fisheries (e.g., Hjort, 1914). In the
North Atlantic and North Pacific, many fishery-independent sur-
veys have been operating for multiple decades, and some have
been conducted for 50 years or more.

Fishery-independent surveys generally address the interpretive
limitations imposed by sampling changes over time that effect
many fishery-dependent datasets. The spatial and temporal resolu-
tion of fishery-independent surveys, however, remains coarse rel-
ative to the space and time scales of many physical and
biological processes thought to influence LMRs (Fig. 1). Station
spacing for fishery-independent surveys is often tens to hundreds
of kilometers and surveys are often annual or restricted to a few
times a year at best. This makes effectively sampling multiple spe-
cies over diverse habitats a challenge.

The coarse resolution of most fishery-independent LMR surveys
contrasts with fine-resolution physical measurements provided by
advances in satellites, high-frequency radar systems, drifters,
moorings, flow-through systems, towed bodies, autonomous
underwater vehicles, and ocean observing systems. Closing this
sampling gap is important for understanding and constraining
the mechanisms that link climate fluctuations and LMR responses.
Intensive process-oriented surveys and new LMR observing tech-
nologies offer two means of achieving this. Process-oriented sur-
veys supplement census surveys by undertaking more extensive
sampling activities for a shorter period of time (often 3–5 years)
aimed at resolving key uncertainties in LMR dynamics. New LMR
observing technologies can refine the spatial and temporal resolu-
tion of observations and have been incorporated into both process-
oriented and census surveys. These new technologies include
acoustic biomass estimates for LMRs that do not inhabit waters
near the benthos. Such estimates have been included in assess-
ment models for a number of LMRs (e.g., Traynor et al., 1990; Over-
holtz et al., 2006; Hamel and Stewart, 2009) and improved
techniques are being developed (Makris et al., 2009). Aerial surveys
are enlisted for LMRs that can be detected from the surface (Ken-
ney et al., 1995; Churnside et al., 2003). Towed high-resolution
underwater cameras provide additional information on the abun-
dance and movements of both targeted and non-targeted fishery
species (Cowen and Guigand, 2008; Rosenkranz et al., 2008). Elec-
tronic tags with multiple sensors (temperature, pressure, light)
have provided invaluable information on LMR behavior and habi-
tat, particularly for highly migratory fish, mammals, and reptiles
(Metcalfe and Arnold, 1997; Block et al., 2005).

The information on long time scales of change in populations of
fish and other marine taxa from historic, archaeological, or paleo-
ecological studies is increasing rapidly (Emeis et al., 2010; Finney
et al., 2010; Poulsen, 2010) and provides a particularly useful per-
spective on how current understanding of climate–ecosystem
dynamics may be limited by our overwhelming reliance on short
observational records. The longer records show that bottom-up ef-
fects are important and that the strength and even the sign of cer-
tain climate–ecosystem relationships may change over time
(Finney et al., 2010). For example, the relationship between Pacific
sockeye salmon and regional sea surface temperature (SST) has
been positive over the past century, but was apparently negative
in the mid to late 1800s. This variability does not mean that salmon
populations are unaffected by the processes that impact SST, but it
does mean that the relationship is more complex than might be as-
sumed from recent records. The complexity of relationships be-
tween climate state and fish abundance suggests a variety of
modes of climate variability and ecosystem dynamics. Long-term
records of marine population fluctuations provide strong evidence
that climate affects their production and composition and helps to
identify the time and space scales at which these relationships

manifest themselves (Emeis et al., 2010). Comparing the statistics
of such long records with historical and control climate model sim-
ulations may offer interesting new insight into the factors and
modes of climate variability driving observed fluctuations.

2.3. Living marine resource models

A broad range of models are used for LMR assessment and fore-
casts that could be adapted for climate change applications. The
models have different objectives, forms, and governing equations
and can be arranged according to their degree of complexity (e.g.,
Hollowed et al., 2000; Whipple et al., 2000; Plaganyi et al., 2007;
Howard et al., 2008). Each model type, ranging from simple to com-
plex, has different trade-offs. Simple models tend to make strong
assumptions, relying heavily upon empirical relationships between
measured variables and emergent LMR responses that are presumed
stationary. Simple models may not accommodate environmental or
spatial heterogeneity, may consider the population dynamics of one
LMR, or may coarsely aggregate organisms into very broad func-
tional groups. It is generally more feasible to constrain the limited
number of parameters in simple models with existing observations
(Section 2.2). Simple models often yield more precise solutions and it
is generally more feasible to analyze model sensitivity and define the
range of forecast uncertainty. This precision, however, arises in part
from the rigidity of simple model structures, and model errors or
omissions will not be reflected in the range of model outcomes.

Complex models attempt to more comprehensively capture
many aspects of LMR dynamics and their associated uncertainty
(i.e., Section 2.1). Complex models strive to recreate emergent
LMR patterns by combining more direct underlying relationships
between organisms, their resources, their predators, and their
physical environment. While reliance on more fundamental eco-
logical relationships should make model predictions in a changing
climate more robust, model misspecification can occur, and expli-
cit resolution of many additional processes introduces a large
number of new parameters that are difficult to constrain with
existing observations. This makes the analysis of model sensitivity
and uncertainty more difficult and computationally intensive and
often results in a broader range of possible outcomes. Alterna-
tively, more flexible and realistic model structures in complex
models reduce the potential for model errors arising from oversim-
plification of the model dynamics.

The rest of this section provides an overview of the models used
for LMR assessment and forecasting and, along with the case studies
presented in Section 4, discusses their utility (and the implications of
the simplicity/complexity trade-offs discussed above) for forecast-
ing LMR responses to climate change. Traditional single-species
stock assessment models are discussed first. Single-species stock
assessment models focus on the dynamics of a target LMR and form
the backbone of many LMR management efforts. Next, a range of
other modeling approaches are presented under the broad heading
‘‘ecosystem approaches’’. This heading reflects a general shift in
the model’s emphasis from a single stock of interest to interactions
between organisms and between organisms and their environment.
It is notable, however, that there is no clear delineation between eco-
system approaches and single-species stock assessment models.
Many single-species stock assessment models do incorporate and
emphasize environmental and climate interactions (Keyl and Wolff,
2008). The delineation is thus simply a pragmatic means of review-
ing fundamental principles and assumptions of widely-used stock
assessment models before reviewing the scope of potential cli-
mate/LMR modeling approaches.

2.3.1. Traditional single-species stock assessment models
Management of exploited or endangered LMRs can have numer-

ous objectives, but an overarching goal is to maintain healthy
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resource populations while allowing economic and societal utiliza-
tion.3 Human utilization can include the directed take of target spe-
cies (e.g., fisheries), the by-catch of non-target species associated
with target species, or accidental take of endangered species (e.g.,
ship strike of whales or by-catch of sea turtles in fishing gear).
LMR management decisions are usually based on an assessment of
the population’s past fluctuations and present state (a hindcast),
and a forecast of future status. Many single-species assessment mod-
els estimate the present state and past fluctuations of three key met-
rics for a LMR within a management area: how much LMR biomass is
present, how much LMR biomass is being removed, and how much
LMR biomass is being replenished. Reductions in biomass can occur
due to fishing mortality (F), natural mortality (M), and emigration
(E). Replenishment can occur due to growth of the existing exploit-
able stock (G), immigration (I) or the addition of young LMRs to the
exploited stock (recruitment, R).

At the core of nearly all single-species stock assessment models
is a more complex version of the following basic population
dynamics equation that describes changes in biomass (B) due to
the processes described above:

Btþ1 ¼ Bt þ ðRt þ Gt þ ItÞ % ðFt þMt þ EtÞ ð1Þ

The time (t) can be measured at a variety of scales, typically in years
or seasons. Typical data sources are historical catch records, survey
biomass indices, and age and size compositions (Section 2.2). Model
parameters are statistically fit to observations.

Single-species stock assessment models are generally used to
estimate biological reference points that are used to make manage-
ment decisions. In fisheries, most biological reference points are
based on the concept of maximum sustainable yield (MSY), the
largest catch that can be removed from a population over a long
period of time (i.e., without depleting the stock). Theoretically, a
population is maintained at MSY by balancing removals with pop-
ulation increases due to new individuals entering the population.
While maintaining the population at the biomass that provides
the MSY harvest would be optimal, it is generally recognized that
the MSY estimated by traditional assessment models cannot be
maintained perfectly due to LMR variability that is not captured
by the models. Precautionary biological reference points are thus
recommended (Mace, 2001). In the United States, biological refer-
ence points are set such that the target biomass or fishing mortal-
ity is less than or equal to the limit biomass or fishing mortality. If
the estimated biomass is below the limit, the stock is declared
overfished. If the estimated fishing mortality is over its limit refer-
ence point, overfishing is occurring. Actions are taken based on
these determinations to end overfishing and to allow the over-
fished stocks to recover. These management actions are informed
by model forecasts based upon the model developed from the
hindcast. Forecasts are generally made for annual to decadal time
scales under a variety of fishing or effort limitation scenarios in or-
der to determine the total allowable catch or effort likely to ensure
that biological reference points are satisfied within a specified
time.

Many stock assessments rely upon limited observations and rel-
atively simple, highly empirical relationships to constrain the
potentially complex processes in Eq. (1). Recruitment (R) is an
example of a particularly critical process in most stock assessment
models (Myers, 1998; Haltuch and Punt, submitted for publication)
that is commonly assumed to be a function of stock biomass (B).

Several mathematical forms are used for this ‘‘stock–recruitment
relationship’’ (Hilborn and Walters, 1992; Quinn and Deriso,
1999), one of which is that of Ricker (1954):

Rtþ1 ¼ aBte%bBþet ð2Þ

This form assumes an initial increase in R with B proportional to aBt,
followed by a decrease in R as B approaches a habitat’s carrying
capacity (&e%bBt ). et is a stochastic error around the stock–recruit-
ment relationship which includes the contributions of any other
factors that may influence recruitment and can be substantial
(Rothschild, 1986). Direct observation of R is rarely possible, so esti-
mates of the stock-recruitment relationship parameters are gener-
ally derived by fitting the population dynamics model (Eq. (1)) to
the best-fit estimates of recruitment and biomass. Thus, the poten-
tially complex process of recruitment is posed as an empirical rela-
tionship with spawning biomass with variance due to other factors.

There are numerous approaches for incorporating climate forc-
ing in single-species stock assessment models. The most common
examples include cases where climate variables are used to im-
prove a model’s fit by modifying the processes included in Eq. (1)
(NMFS, 2001; Keyl and Wolff, 2008). For example, many authors,
including case study 4.4 herein, have incorporated environmental
variability into recruitment by modifying the Ricker (1954) equa-
tion to include an environmental factor (E):

Rtþ1 ¼ aBte%bBtþcEþe ð3Þ

E could be any of a number of environmental factors (e.g., SST, salin-
ity, alkalinity) and c is the parameter determining the impact of the
environmental data. While environmental information can be read-
ily incorporated into stock assessments in this fashion, it is often
difficult for relationships such as Eq. (3) to elucidate the mecha-
nisms driving the relationships between environmental variation
and the LMR response. Models that do incorporate environmental
data are in some case referred to as Extended Stock Assessment
Models (ESAMs).

Long-term projections of traditional stock assessment models
with environmental data based on IPCC climate change predictions
pose some challenges. Using the stock–recruitment relationship,
for example, may be problematic due to the uncertainty in the
robustness of emergent relationships between LMR dynamics
and environmental factors in a changing climate (e.g., Finney
et al., 2010). Furthermore, in most cases the available fisheries data
(Section 2.2) are not sufficient to resolve the connections between
the population process of interest and environmental factors
thought to influence this process, particularly when the effects of
environmental change may be confounded by fishing (Haltuch
and Punt, submitted for publication). Stocks that show periodic
strong recruitment events with little recruitment in between often
have only a few strong recruitment events from which to make
inferences (Hamel and Stewart, 2009). Issues such as those de-
scribed above have engendered an active debate regarding the
inclusion of environmental correlates in stock assessment models
without a more complete mechanistic understanding of the envi-
ronment–LMR population interactions (Myers, 1998).

2.3.2. Ecosystem approaches
A wide range of alternative approaches for modeling LMR

dynamics have been developed and can complement and augment
traditional single-species stock assessment models for LMR predic-
tion. Multispecies stock assessment models integrate the dynamics
of several interacting resource stocks, but the dynamical relation-
ships between them remain highly empirical. Most of these models
attempt to capture the dynamics of several species, simulta-
neously, usually via a population model (i.e., Eq. (1)), linked via
feeding or technical interaction submodels (Hollowed et al.,

3 For more detailed information on stock assessment, an accessible general
overview is provided by Cooper (2006) (http://www.seagrant.unh.edu/stockassess-
mentguide.pdf) or Haddon (2001). More detailed treatments are provided by Hilborn
and Walters (1992) or Quinn and Deriso (1999). For endangered species, population
viability analysis (PVA) is often used. Details of this method can be found in Beissinger
and Mccollough (2002).
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2000; Whipple et al., 2000; Howard et al., 2008). Most of these
models do not explicitly address environmental considerations.
The GADGET, BORMICON, and MULTSPEC models (Bogstad et al.,
1997; Stefansson and Palsson, 1998; Tjelmeland and Bogstad,
1998; Begley and Howell, 2004) are an exception to this situation.
These models can explicitly examine and explore the outcomes
among the range of trade-offs resulting from the species interac-
tions and contrast environmental effects with fishing; a useful
but rare combination of factors that are considered
simultaneously.

Habitat models rely on past habitat observations and physiolog-
ical information for LMRs to predict changes in stock distribution
and range. In the climate change context, habitat models that
examine the relationship between climate variables and organism
distributions are often referred to as bioclimatic envelope models
and have been widely applied to project impacts of climate change
on the distribution of plants and animals (e.g., Heikkinen et al.,
2006; Cheung et al., 2009). The most basic forms of habitat models
assess only habitat suitability and do not take into account food-
web interactions, limitation to dispersal ability, or changes in eco-
system productivity. Cheung et al. (2008a) have addressed some of
these limitations by integrating bioclimate envelope, population
dynamics, and animal dispersal models (see Section 4.1). However,
habitat models may still attribute LMR residence in a region to the
wrong habitat characteristics. Reliance upon previously observed
distributions to define habitats introduces a strong empirical
element to habitat models and requires the assumption that the
observed distributions are at equilibrium with the environment.
Lastly, poorly understood evolutionary adaptations to a changing
climate may introduce a source of error to predicted distributions.
Incorporating direct physiological constraints for the organism of
interest or applying macroecological theory can ameliorate these
concerns.

Aggregate biomass models link together groups of LMRs occu-
pying similar positions in the marine food web to capture the basic
characteristics of trophic groups, often in the form of mass-
balanced energy flows through the marine ecosystem (Polovina,
1984; Heymans and Baird, 2000; Christensen and Pauly, 2004;
Dame and Christian, 2006; Plaganyi et al., 2007; Howard et al.,
2008). These models can also incorporate fishing and other losses
linked to humans. However, the mathematical representation
and parameter values used to specify predator–prey interactions
are difficult to constrain and can have a large impact on model
dynamics (Walters et al., 1997). These difficulties generally lead
to less precise solutions though, as was pointed out above, these
may more appropriately reflect the range of possible solutions.
Greater aggregation of similar species or of age or of size classes
within a species can ameliorate difficulties in parameterizing these
models, but at the price of losing resolution of inter-species inter-
actions and life cycle dynamics. These models can accommodate
some aspects of both spatial dynamics and environmental fluctua-
tions (Pauly et al., 2000; Martell et al., 2005).

Individual-based models (IBMs) simulate LMRs by tracking
individuals; the sum of which comprise the population. This ap-
proach maximizes the ability to capture the mechanistic underpin-
nings of emergent observed patterns (Grimm et al., 2005). The IBM
approach has been used in forest succession modeling for decades
and has seen an explosion of application to fish since the 1990s
(Van Winkle et al., 1993; DeAngelis and Mooij, 2005). IBMs are
often implemented into highly resolved physical simulations,
where behaviors can lead to profound shifts in dispersal and reten-
tion (Werner et al., 2001; North et al., 2009). The advantages to the
individual-based approach, relative to the more aggregated (bio-
mass, age, stage) approaches, include allowing for more direct sim-
ulation of episodic, local, and size-based interactions, direct
representation of movement, direct simulation of the effects of

individuals experiencing environmental conditions over time,
and including physiological and behavioral plasticity (Huston
et al., 1988; Tyler and Rose, 1994). IBMs share the data-intensive
parameterization and decreased precision issues that characterize
aggregate biomass approaches. They are also computationally
intensive, particularly when realistic abundances are desired for
food web calculations. However, the use of ‘‘super-individuals’’
(Scheffer et al., 1995; Parry and Evans, 2008) has made such anal-
yses more feasible. Models of lower trophic level organisms (e.g.,
zooplankton) and early life stages of higher trophic level LMRs
(e.g., eggs and larval fish) are available; models that close the life
cycle of higher trophic level LMRs so that multiple generational
simulations can be performed to assess the long-term effects of cli-
mate on LMRs are advancing but remain mostly focused on single-
species dynamics (Lett et al., 2009).

Recent efforts to develop models that fully integrate highly re-
solved physics, planktonic dynamics, LMR dynamics and human
dimensions strive to combine various modeling threads described
above (Fulton et al., 2004b; Travers et al., 2007; Lehodey et al.,
2008; Senina et al., 2008; Rose et al., 2010; Barange et al., in press).
Such models are often referred to as ‘‘end-to-end’’ models and can
support a myriad of climate-LMR interactions. They are ambitious
attempts to comprehensively represent the scope of LMR dynamics
described at the outset of this section. Several concerted efforts to
develop end-to-end models are underway. Lehodey et al. (2008)
use the marine environment simulated from physical and biogeo-
chemical models to force a simplified three layer-ocean ecosystem
with a coarse description of mid-trophic levels but detailed spatial
population dynamics of high-trophic level species of interest (e.g.,
bigeye tuna, see case study in Section 4.2). As in traditional stock
assessment models, the model includes a rigorous parameter opti-
mization based on fishing data (Senina et al., 2008) that is a critical
step for applying the model to tactical management (e.g., setting
specific reference points and quotas). Shin and Cury (2001) used
an individual-based approach to simulate a many-species food
web (called OSMOSE: Objected-oriented Simulator of Marine ecO-
Systems Exploitation) on a 2-D spatial grid of cells and coupled the
higher trophic level with a planktonic ecosystem model. The model
was used to examine the impact of various aspects of fishing on the
food web (e.g., Shin and Cury, 2004; Travers et al., 2007). The
IGBEM and BM2 models (Fulton et al., 2004a,b), now called Atlan-
tis, separate each fish species or group into age classes and couple
the fish to an elaborate three-dimensional water-quality model.
The model has been used for site-specific analyses (e.g., Fulton
et al., 2004a) and for exploring general aspects of fishing effects
on fish communities (e.g., Fulton et al., 2005). An alternative to rep-
resenting the community at the species level is size-based models
(Baird and Suthers, 2007), whereby the state variables represent a
progression of size classes rather than association with any partic-
ular species. The QUEST-fish model (Barange et al., in press) uses a
combination of climate, planktonic, fishery, and socioeconomic
models to study the impact of climate change on global fisheries
production and national and regional economies.

While end-to-end models show great promise for revealing the
responses of ecosystems to climate change, their parameterization
can be daunting and uncertainties can lead to a very wide range of
outcomes. Adequately exploring the parameter and structural
uncertainty in such models to generate the range of outcomes on
climate change time scales also poses a computational challenge.
These issues, along with the early developmental stage of most
models of this type, caused Rose et al. (2010) to caution against
using end-to-end models for management decisions until they
are more fully evaluated. Fulton et al. (in press) agree that such
models are not yet useful for tactical LMR advice, but argues that
these models are quite useful for providing long-term strategic ad-
vice (e.g., evaluating the trade-offs and interactions between LMR
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management policies emphasizing marine protected areas, quotas,
or vessel buybacks, Fulton et al. (2007)) for LMR management and
can accommodate a wide range of climate change effects.

3. IPCC-class climate models

IPCC-class climate models are constructed to understand and
predict the dynamics of the earth’s climate, which in simplest
terms can be thought of as the ‘‘average weather’’. More precisely,
climate is a statistical description of relevant quantities (e.g., air
and sea surface temperature, precipitation, wind) in terms of mean
and variability over a period in time ranging from months to thou-
sands or millions of years (Baede, 2007). To capture these quanti-
ties, climate models must represent the components of the
climate system that control them (Fig. 2). To predict LMR responses
to climate change, this information must then be effectively inte-
grated with tools for LMR prediction (Section 2.3).

This section provides an overview of the architecture of climate
models and the century-scale climate change simulations that are
central to both the fourth IPCC assessment report (IPCC AR4) and
remain critical components of the fifth assessment (IPCC AR5) that
is presently underway. Aspects of the models and simulations that
strongly affect the manner in which these models can be applied to
LMR problems are synthesized. Two relatively new model configu-
rations that may allow for new applications after IPCC AR5 are also
described. These are inter-annual to decadal-scale prediction
experiments with physical climate models and earth system model
simulations.

3.1. Century-scale climate model simulations

The objective of the century-scale climate change simulations
conducted for IPCC AR4 and presently underway for IPCC AR5 is
to simulate and understand the causes of historical climate

changes (1860 to present day) and to make global projections of
climate change over the next century including an assessment of
the uncertainty in those projections. Climate model realism has in-
creased steadily over the past decades with increasing computer

Fig. 2. Schematic view of the components of the climate system, their processes and interactions.. Source: Le Treut et al. (2007), Climate Change 2007: The Physical Science
Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, FAQ 1.2, Fig. 1. Cambridge University Press.

Table 1
IPCC AR4 model resolution. Horizontal resolutions for the ocean are given in degrees
of latitude and longitude. Atmospheric resolutions are given by either degrees of
latitude and longitude or, for atmospheric models using spherical harmonics, a
triangular truncation number (e.g., T 63). This represents the number of spherical
harmonics resolved by the model. An approximate formula for the grid resolution for
a model with truncation number n is 360/(3n + 1). A T 63 atmospheric model thus has
a grid resolution of approximately 1.9!. The number following the L gives the number
of vertical levels.

Model name Oceanic resolution Atmospheric resolution

BCC-CM1 1.9! ' 1.9! L31 T 63 L19
BCCR BCM2.0 2.4! ' 2.4! L24 T 63 L31
CGCM3.1 T 47 1.85! ' 1.85! L29 T 47 L31
CGCM3.1 T 63 1.4! ' 0.94! L29 T 63 L31
CNRM CM3 2! ' 0.5! L31 T 63 L45
CSIRO Mk3.0 1.875! ' 0.84! L31 T 47 L31
GFDL CM2.0 1! ' 1! L50 2.5! ' 2! L24
GFDL CM2.1 1! ' 1! L50 2.5! ' 2! L24
GISS AOM 4! ' 3! L16 4! ' 3! L12
GISS-EH 2! ' 2! L16 5! ' 4! L20
GISS-ER 5! ' 4! L13 5! ' 4! L20
IAP FGOALS 1! ' 1! L33 T 42 L26
INM CM3.0 2.5! ' 2! L33 5! ' 4! L21
IPSL CM4 2! ' 1! L31 2.5! ' 3.75! L19
MIROC HI 0.28! ' 0.19! L47 T 106 L56
MIROC Med 1.4! ' 0.5! L43 T 42 L20
MIUB ECHO-G 2.8! ' 2.8! L20 T 30 L19
MPI ECHAM5 1.5! ' 1.5! L40 T 36 L31
MRI CGCM2.3 2.5! ' 0.5! L23 T 42 L30
NCAR CCSM3 1.1! ' 1.1! L40 T 85 L26
NCAR PCM1 2/3! ' 1/2! L32 T 42 L18
UKMet HadCM3 1.25! ' 1.25! L30 3.75! ' 2.5! L19
UKMet HadGem1 1! ' 1! L40 1.875! ' 1.25! L38
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power and new understanding of climate system dynamics (Le
Treut et al., 2007). A typical climate model used for IPCC AR4 cou-
ples dynamical atmosphere, ocean, land, and sea-ice models into
what is referred to as an Atmosphere–Ocean General Circulation
Model (AOGCM). AOGCMs simulate the dynamics of each of these
components and the exchanges of thermal and kinetic energy,
water, and potentially gases and aerosols between them. Model
dynamics are derived from physical laws (e.g., the laws of motion
and thermodynamics) discretized in time and three-dimensional
space and solved numerically. The reliance of climate models on
fundamental physical principles and their ability to capture prom-
inent observed features of past and present climate give consider-
able confidence that physical climate models provide credible
quantitative estimates of future climate change (Randall et al.,
2007). Confidence is generally greater at continental scales and
above, however, and varies by climate variable. The biosphere
(e.g., Fig. 2, ocean biogeochemistry, land vegetation) was not
explicitly resolved in most AR4 models and models of this type
are thus often referred to as ‘‘physical climate models’’. This con-
vention will be maintained herein. The resolution of the physical
climate models used for IPCC AR4 varies between models and be-
tween components (Table 1). Typical oceanic horizontal resolu-
tions are &1–2!, atmospheric and land horizontal resolutions are
&2–3!. The number of vertical levels in the oceanic and atmo-
spheric components may vary from as few as 10 to as many as
50. Atmospheric time resolution is &10–20 min whereas oceanic
time resolution is usually an hour or two. Over the course of sev-
eral months to a year of real time, climate model simulations with
these resolutions can be run for the several thousand model years
required to conduct the wide range of century-scale experiments
analyzed in IPCC AR4. In particular, climate models are run for
multi-century integrations in order to characterize internal
variability in the natural climate system, forced climate changes
due to greenhouse gas accumulation, and any systematic separa-
tion (or drift) of the modeled climate away from observations.
Results are typically archived at the model’s spatial grid resolution.
However, it should be noted that problems associated with data
volume place a practical limit on the amount of information
archived. Thus, monthly averaged information is archived for most
variables, though some are archived at finer intervals4.

The effects of oceanic, atmospheric and land processes that
occur at spatial and temporal scales finer than the model resolu-
tion are represented in climate models by relationships to proper-
ties that are resolved. These ‘‘sub-grid-scale parameterizations’’ are
often based upon simplified physical models of the unresolved
processes or empirical relationships. Oceanic mesoscale eddies,
for example, are not captured by typical climate model resolutions.
Lateral eddy-driven mixing and stirring in the ocean is thus often
represented by a ‘‘diffusion-like’’ equation with the mixing coeffi-
cient scaled according to properties of the mean flow (e.g., shear)
and the lower limit of the resolved motions (e.g., Smagorinsky,
1963; Gent et al., 1995). Such sub-grid-scale parameterizations
vary between models and are a notable source of inter-model
differences in climate predictions (see Section 3.1.4).

Century-scale climate model simulations are generally initial-
ized around the year 1860, before the bulk of anthropogenic green-
house gas emissions. However, since there are very limited ocean
observations from before 1960 or so, the simulations must be ini-
tialized with model output from long ‘‘control’’ integrations. The
radiative forcing (e.g., solar insolation, volcanoes, greenhouse
gases, aerosols, land-use and associated albedos) for these control
integrations is set to conditions near 1860, and the model is

allowed to reach a quasi-equilibrium with 1860 conditions. This
quasi-equilibrium climate defines a baseline from which the im-
pact of changes in radiative forcing can be assessed and analyzed.
However, simulations started from such an initial condition will
not match the phase of natural inter-annual to multi-decadal-scale
climate modes (e.g., NAO, ENSO, PDO) during historical or future
periods. At best, the simulations will reproduce the statistical
properties of such phenomena if the climate system dynamics
responsible for these climate modes are properly represented in
the model (Randall et al., 2007).

Climate models require prescription of radiative forcing scenar-
ios. These scenarios can include changes in natural, externally im-
posed radiative drivers (e.g., the amount of radiation incident upon
the earth, volcanic activity) or human-influenced drivers such as
greenhouse gases and aerosols. For the historical period, estimates
based upon available observations are used to produce a time ser-
ies for each driver (Forster et al., 2007). Some elements, such as
CO2, are well constrained. Others, such as the spatial distribution
of radiatively active aerosols, are highly uncertain. To make projec-
tions, scenarios of future population, technological development,
and societal choices are developed, and these are used to estimate
future anthropogenic emissions and atmospheric concentrations of
radiatively active gases, including all major greenhouse gas species
(Nakicenovic et al., 2000). These trajectories form the primary forc-
ing for climate model projections (Meehl et al., 2007). The three
primary scenarios used in AR4 are known as SRES scenarios B1,
A1B and A2 and essentially correspond to low, moderate, and high
future emissions respectively.

Several characteristics of the century-scale climate simulations
outlined in the preceding paragraphs must be considered closely
when attempting to link climate change to project LMR variations
under future climate scenarios: model resolution, the interplay be-
tween internal variability and radiatively forced changes, regional
model biases, and inter-model spread. The sections that follow dis-
cuss each of these issues in detail. Downscaling techniques will
also be discussed within the model resolution Section 3.1.1.

3.1.1. Model resolution
The objectives and design of century-scale climate model simu-

lations emphasize global-scale climate dynamics over multiple
decades to a few centuries. One of the major challenges in applying
IPCC-class climate models to LMR problems is reconciling this
emphasis with the space and time scales important to LMRs (Sec-
tion 2.1, Fig. 1). This issue is particularly prominent in coastal
waters, where the majority of LMRs are harvested. In most AR4 cli-
mate models, a single grid cell may span the entire shelf width. For
example, the left panel of Fig. 3 shows the climatological near-
surface horizontal and vertical currents off the Pacific Northwest
Coast of the USA from the GFDL CM2.1 coupled climate model
(Griffies et al., 2005; Delworth et al., 2006; Gnanadesikan et al.,
2006; Stouffer et al., 2006; Wittenberg et al., 2006). Simulations
from this model were contributed to IPCC AR4, and it has an oce-
anic resolution of 1! ' 1! and an atmospheric resolution of
2.5! ' 2!. The right panel of Fig. 3 shows the same quantities for
the GFDL CM2.4 coupled climate model (Farneti et al., 2010), which
has an oceanic resolution of 0.25! ' 0.25! at the equator and an
atmospheric resolution of 1! ' 1!. This resolution translates to
&15 km oceanic resolution at this latitude because the CM2.4 mod-
el grid preserves the aspect ratio of the grid cells as lines of longi-
tude converge with increasing latitude. Both CM2.1 and CM2.4 are
characterized by a southward mean flow and upwelling near the
coast, but the finer resolution CM2.4 simulation produces horizon-
tal and vertical velocities that are more consistent with the vigor-
ous, highly divergent observed currents in the region (e.g., Hickey,
1998).

4 Model simulations analyzed for IPCC AR4 can be accessed through the Program
for Climate Model Diagnostics and Intercomparison (PCMDI) website: http://www-
pcmdi.llnl.gov/.
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Refined resolution AOGCMs hold great promise for improving
climate models and increasing their applicability to LMR problems.
However, the computational costs increase in proportion to the
cube when the horizontal grid size halves due to required reduc-
tion in the time step that accompanies refined resolution. In addi-
tion, developing robust fine-resolution climate simulations
requires a careful re-inspection of model physics. Many of the pro-
cesses previously handled by sub-grid-scale parameterizations
(Section 3.1) are now resolved and sub-grid-scale dynamics may
need reformulation (e.g., parameterized eddy mixing). Output stor-
age costs are also greatly increased unless adjustments to storage
frequency, averaging, or the number of variables saved are made.
Some fine-resolution physical climate model results will likely be
available for AR5 (joining the MIROC-Hi results from AR4), but
the experiments carried out with these models will likely be lim-
ited, and the majority of AR5 century-scale simulations will be
conducted with resolutions similar to or slightly finer than those
in AR4 (i.e., Table 1, resolutions similar to the left panel of Fig. 3).

There are aspects of LMR dynamics that respond to basin-scale
patterns directly resolved by climate models. Highly migratory fish
such as tuna, for example, react to broad oceanic patterns, and tuna
have been modeled using coarse climate model results as environ-
mental inputs (see Section 4.2). However, even in such cases, res-
olution of the actual oceanic features (i.e., fronts, eddies) to
which LMRs respond is often limited. There are, however, ‘‘down-
scaling’’ techniques by which information about finer spatial and
temporal scale dynamics that are not resolved by climate models
can be extracted from the coarser, resolved scales. Downscaling
techniques fall into the two general categories of ‘‘statistical’’ and

‘‘dynamical’’ techniques – with hybrid techniques also possible.
Statistical downscaling relies on empirical relationships between
resolved, larger-scale features and unresolved fine-scale features.
An advantage of statistical downscaling is relatively low computa-
tional cost. Disadvantages of statistical downscaling include the
necessity of assuming stationarity in the statistical relationship,
the difficulty in selecting the relevant predictors (multiple statisti-
cal predictors can be fit to the training data equally well, but give
fundamentally different implications when applied to AOGCMs;
e.g., Vecchi et al., 2008), and the potential influence of observa-
tional errors on the development of the statistical model.

A wide variety of statistical downscaling models have been used
for climate applications over land (Blenckner and Chen, 2003;
Salathe, 2005; Christensen et al., 2007) but have been employed
much less frequently in the marine environment where there are
few long data records needed to establish reliable statistical rela-
tionships for climate variables. Nevertheless, statistical downscal-
ing may provide useful information for studying the oceans. For
example, Overland et al. (2002) investigated how local air–sea
interactions known to be important to the ecosystem of the Bering
Sea shelf relate to large-scale modes of climate variability, while
Heyen et al. (1996) related sea level anomalies along the Baltic
Sea coast to large-scale North Atlantic air pressure anomalies. An-
other example of statistical downscaling is given in case study 4.4.

A number of methods have been employed in statistical down-
scaling including linear regression or pattern-based variants such
as canonical correlation analyses (CCA, Karl et al., 1990), analogues,
where a forecast is matched to past conditions (Hamill et al., 2006),
local rescaling of a predicted variable (Widmann et al., 2003)

Fig. 3. Illustrative example of the impact of resolution. The left panel shows horizontal current vectors and vertical velocities (color contours) for the Oregon–Washington
coast in GFDL CM2.1. This model has a horizontal resolution of 1! at the coast and (&68 km horizontal resolution at 47!N). The right panel shows the same quantities for GFDL
CM2.4 (&17 km horizontal resolution at 47!N). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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general additive models (GAMS, Hastie and Tibshirani, 1990) and
neural networks (Cavazos, 1997). Hewitson and Crane (1996),
Wilby et al. (2004), and Haylock et al. (2006) have evaluated the
strengths and weaknesses of various downscaling methods, and
Wilby et al. (2004) discuss which ones are appropriate for a given
application. One can test the efficacy of the predictors, which can
include atmospheric, oceanic and ecological variables, e.g. SST,
upwelling, NO3, plankton biomass, depending on the LMR vari-
able(s) one wished to predict. The statistical relationships should
be tested using a jackknife approach, where some of the data is re-
served for validation and not included when developing the model.

Dynamical downscaling uses fine-resolution dynamical models
to estimate fine-scale dynamical features. Advantages of dynamical
techniques include the physical consistency of the solutions and
their reliance upon fundamental physical principles; disadvan-
tages of dynamical techniques include the higher computational
cost of running the models, complexity of running fine-resolution
models with a coarser resolution (in time and space) physical
climate model constraints, and the inability of even very fine-
resolution models to represent all of the processes that control
some ecosystem-relevant features (i.e. Fig. 1). Lastly, while dynam-
ical downscaling may improve the representation of local climate
dynamics, the fine-scale simulations are still strongly influenced
by any biases in the global simulations used for the boundary
forcing (e.g., Meier et al., 2006).

Common configurations for regional climate model dynamical
downscaling include forcing regional coastal simulations with off-
shore boundary conditions and atmospheric forcing from coarse
global climate simulations (Curchitser et al., 2005; Powell et al.,
2006; Hermann et al., 2009), forcing fine-resolution regional-scale
coupled climate models with boundary conditions form coarse glo-
bal climate simulations (e.g., Christensen et al., 2007), or forcing a
fine-resolution global climate model component with information
from coarse coupled model simulation (e.g., Cubasch et al., 1995).
The coupling of fine-resolution regional simulations with coarse-
resolution global climate models can be ‘‘one-way’’, with informa-
tion passed only from the global scale to the regional scale
(Hermann et al., 2009), or ‘‘two-way’’, with information being
passed between the regional and global scales. The primary advan-
tage of one-way nesting for regional ecosystem applications is the
global simulation does not need to be re-run to carry out the regio-
nal simulation. The primary disadvantage is the potential for
inconsistencies to develop between the dynamics of the regional

simulation and those imposed by the global-scale simulation.
Inconsistencies are not limited to the dynamical scales captured
by the refined resolution grid but not captured by the coarse global
grid. Larger-scale discrepancies can arise due to the influence of
fine-scale motions on broader-scale patterns.

Two-way nesting allows the refined solution to influence the
global climate model solution and removes the potential for incon-
sistencies between the global and regional solutions. Targeted use
of two-way nesting with high-resolution models in regions where
limited climate model resolution has been linked to model biases
(e.g., Section 3.1.3, eastern boundary current upwelling systems,
narrow straits and overflows) may provide a means for improving
global climate simulations. The primary cost of two-way nesting is
that the global simulation must be run in concert with the regional
simulation. This can be a significant computational burden for
studying climate impacts on regional LMRs. In addition, while
two-way nesting methodologies have been developed, nesting in
a manner that robustly allows for dynamically consistent, non-
diffusive, and conservative transfer of properties between grids
of different resolutions is still an area of active research.

3.1.2. Internal variability versus externally forced changes
Changes in climate conditions can arise due to changes in the

radiative forcing (referred to as the ‘‘forced change’’) or due to
internal variations in the climate system, and the changes evident
at any time and place will be a combination of these two sources.
Furthermore the forced change will be due to a combination of nat-
ural (e.g., solar, orbital changes, volcanoes) and anthropogenic
sources (e.g., greenhouse gases, many classes of aerosols). Multiple,
or ‘‘ensemble’’, simulations are often used to study the relative
roles of forced change and internal variability. In particular, they
are useful for assessing when changes in a quantity exceed ex-
pected variations from climate variability (i.e., to determine when
climate change is detectable). These ensembles are generally con-
structed by using different snapshots from the pre-industrial con-
trol run as the initial condition for a climate projection. Members
of the ensemble represent a family of equally likely evolutions of
the model system under the same forcing. The average, or ensem-
ble mean, is usually a better representation of the observed climate
over the past century than any single ensemble member (Reichler
and Kim, 2008), but the evolution of the observed climate system
should not be expected to exactly follow any individual ensemble
member or the ensemble mean.

Fig. 4. Detecting the signature of global warming over the historical period of a climate model simulation is generally more difficult at regional scales. The left plot (a) shows a
six member ensemble from GFDL’s CM2.1 and the ensemble mean for the global mean temperature. A clear century-scale trend is apparent despite substantial internal
variability in the climate system. The right plot (b) shows the same comparison for the Northeast Pacific. Any century-scale trends are obscured by large internal variability.
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The relative importance of forced climate changes to internal
climate variability tends to increase at larger spatial and temporal
time scales because quantities that integrate forcing changes over
very long space and time scales (e.g., decadal mean global ocean
heat content) are tightly coupled to the net radiative imbalance
of the planet. Conversely, many variations in regional scale fea-
tures (e.g., weekly mean discharge of regional rivers) are expected
to be driven primarily by internal climate variations (e.g., ENSO,

PDO, random weather events). Fig. 4 illustrates this tendency by
comparing global mean SST trends (left panel) with those over
the North Pacific from a five-member ensemble using GFDL
CM2.1 from 1861 to 2000. In the global case, the ensemble mem-
bers follow the ensemble mean fairly closely, and a warming trend
over the century is apparent. In the North Pacific, the ensemble
members vary greatly around the ensemble mean, and no net
warming is apparent.

There exist exceptions to the tendency of internal variability to
dominate at local scales and forced change to dominate at long
(hemispheric, multi-decadal to centennial) scales. Some hemi-
spheric features, like the Walker Circulation, an east–west tropical
atmospheric circulation, can be dominated by internal variability
that occurs over many decades to a century (Vecchi et al., 2006).
The large-scale circulation and temperature structure of the North
Atlantic Ocean can exhibit considerable internal variability on time
scales of many decades (e.g., Delworth and Mann, 2000). There are
also regions like the central equatorial Indian Ocean, in which
forced century-scale changes dominate over the internal variability
(Fig. 5). Evaluation of the relative roles of the forced signal versus
internal variability should be carried on an application-specific
basis. However, the strong prevalence of internal variability at re-
gional scales and the fact that century-scale climate models are not
designed to match the phase of internal variability (see discussion
of model initialization in Section 3.1) means that century-scale cli-
mate model simulations generally provide very weak constraints
on regional climate changes on time scales of a few decades or less.

3.1.3. Regional model biases
Climate models can have significant departures from observed

patterns in ecosystem-relevant variables (Randall et al., 2007). For,
example, Fig. 6 shows global SST biases for a control simulation

HadISSTv1 (Rayner et al 2003)
NOAA ERSSTv3b (Smith et al 2008)
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Fig. 5. The relative prominence of decadal variability at regional scales is not
universal. This plot shows observed SST variations since 1880 in the central
equatorial Indian Ocean from two SST products. Inter-annual to decadal-scale
fluctuations are modest and the forced signal is apparent despite the limited extent
of the region analyzed. (See above-mentioned references for further information.)

Fig. 6. Annual mean SST difference between the mean SST in CM2.1 under 1990 radiative forcing and observed mean SST between 1982 and 2002.
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under 1990 radiative conditions of CM2.1 relative to mean observed
SST between 1982 and 2002. The overall root mean square error is
1.14, but biases can be much larger at basin and regional scales. In
some cases, such as the eastern boundary current upwelling regions,
the warm bias of the model is likely linked to the under-representa-
tion of key processes (the formation of tropical low clouds and coast-
al upwelling) in coarse climate models. Others, such as the Southern
Ocean warm bias, are less clearly linked to specific processes and
may arise from a suite of interactions and feedbacks within the
AOGCM. Lastly, some pronounced model biases, such as the >6 K
model cold bias over a limited region of the Northwest Atlantic,
are linked to systematic departures in the position of ocean currents.
In this case, the Gulf Stream passes too far to the south of this region
in this model. Many of the biases highlighted in Fig. 6 and the overall
climate model skill with respect to SST are common across most
IPCC AR4 climate models, though inter-model variations do exist
and are variable-dependent (see Section 3.1.4; Randall et al., 2007).

One methodology that is often applied to adjust projections for
systematic model biases is to remove the model climatology from
the total model response and compute anomalies. This anomaly is
then added to the observed climatology to create a blended data-
set. For example, the magnitude of a modeled change in SST in
the next century would be added to the observed mean SST, and
this would be used to predict LMR responses in lieu of an unad-
justed climate projection that exhibited a mean bias.

There are several issues to consider when assessing the viability
of such simple adjustments. First, the model bias may reflect an error
in the mean climate state or it could simply arise from expected
differences in the phase of the inter-annual to multi-decadal inter-
nal climate variability between century-scale climate simulations
and observation (Section 3.1). Ensemble simulations (Section 3.1.2)
could be used to assess if differences between the model and the
observations could be explained by climate variability. Long obser-
vational time series are often required to detect a bias in the model’s
mean climate. Second, model biases arise due to potentially com-
plex, non-linear interactions of the climate system. Diagnosing the
mechanisms underlying climate model biases is an active area of
climate model research and development, and attribution to any
single factor is often impossible. One key assumption when applying
a simple bias correction to the mean climate state that can be
assessed is that the mean climate state and other climate character-
istics (e.g., the magnitude of the predicted change or variance in a
climate variable) are independent. Calculating the covariance
between the model biases and these other climate characteristics
provides one means of assessing the independence of the mean
climate state (McAfee et al., submitted for publication). Even with
this test, simple climate model bias corrections should be applied
with caution and the sensitivity of primary results to these
corrections should be analyzed and documented.

3.1.4. Inter-model spread in climate projections
While climate models share common structures and underlying

principles, they also differ in a myriad of ways, including resolu-
tion, grid design, numerical solution techniques, and the form
and parameters chosen for sub-grid-scale parameterizations. It re-
mains unclear how to best parameterize many important sub-grid-
scale processes (e.g., atmospheric convection, cloud microphysical
processes, and ocean mixing). Variations in these sub-grid-scale
parameterizations contribute greatly to differences in climate pro-
jections and model biases (e.g., Murphy et al., 2007; Kim et al.,
2008; Liu et al., 2010).

Some models will reproduce aspects of the climate system bet-
ter than others. Improving the precision and accuracy of climate
projections or improving the ability to detect and attribute climate
change signals by restricting or weighting climate model ensem-
bles based on the skill of ensemble members at matching observed

patterns in the present climate state is an active area of research
(Hollowed et al., 2009; Pierce et al., 2009; Santer et al., 2009). Such
approaches have proven to be effective for short-term weather
(Raftery et al., 2005) and seasonal predictions (Krishnamurti
et al., 2006). It is not necessarily true, however, that climate models
with closer agreement to observed 20th century climatology
should be expected to have a more ‘believable’ response in the
21st century. For example, Jun et al. (2008) found that climate
model skill in capturing mean northern hemisphere summer and
winter air temperatures between 1970 and 1999 were not gener-
ally correlated with a model’s ability to simulate the warming
trend. At a more regional scale, Pierce et al. (2009) found little rela-
tionship between climate projections of winter temperature over
the western United States and model performance. This led Pierce
et al. (2009) to the conclude that there was little relationship be-
tween the quality of the model dynamics determining regional
patterns in temperature and precipitation and the dynamics deter-
mining anthropogenic climate change signal. In contrast, Giorgi
and Mearns (2002) argue that individually weighting the models
in an ensemble can reduce uncertainty by minimizing the influ-
ence of poorly performing models that often represent outliers.

While the limitations imposed by inter-model spread on regio-
nal climate predictions support the importance of continued re-
search on model selection and weighting to improve forecast
accuracy and precision at regional scales, such techniques still re-
quire further development and testing. Any weighting scheme
should ideally be justified by both empirical evidence of increased
forecast accuracy and precision on climate change time scales and
a process-level understanding of the dynamical aspects of the
model thought to be deficient in the down-weighted or omitted
models. Testing hypothesis about the relationship between ob-
served climatology in a parameter and the validity of the predicted
trend can be challenging because, unlike weather prediction, long
time series are required. However, a multitude of concerted obser-
vational efforts (Bindoff et al., 2007; Lemke et al., 2007; Trenberth
et al., 2007) are beginning to make this testing more feasible. In the
absence of widely accepted weighting practices, a chosen weight-
ing scheme should be viewed as an important scientific aspect of
a study, and results should be analyzed and presented relative to
those obtained from a full ensemble. Indeed, there are advantages
to larger ensembles that may offset the potential advantages of
weighting models or restricting the model ensemble. Analysis at
both global (Reichler and Kim, 2008) and regional (Pierce et al.,
2009) scales suggests that the average of many models tends to
be closer to observed conditions than any single model. It must
be recognized, however, that averaging yields smoothed represen-
tations (in space and time) of the evolving climate, and for some
applications, it may be proper to introduce variability to produce
more realistic climate projections.

3.2. Inter-annual to decadal-scale climate model predictions

The focus of the century-scale simulations described in Sec-
tion 3.1 is an assessment of the climate changes under a relatively
large change in radiative forcing. Such simulations project changes
in the mean climate and the statistics of climate variability (i.e.,
frequency of droughts, etc.), but do not predict the detailed time
evolution of the real climate system going forward in time. Such
simulations do not start from the observed state of the climate sys-
tem, but rather from some simulated state that resembles the cur-
rent climate.

Recently efforts have begun to initialize climate models with an
estimate of the observed state of the climate system in order to as-
sess whether climate variations on inter-annual to decadal time
scales can be predicted (Smith et al., 2007; Keenlyside et al.,
2008; Pohlmann et al., 2009). The motivation for such activities

C.A. Stock et al. / Progress in Oceanography 88 (2011) 1–27 13



rests in observed decadal-scale climate fluctuations and their asso-
ciated large-scale climatic impacts. For example, decadal-scale
fluctuations in the Atlantic have been linked to a host of physical
and ecosystem impacts, ranging from drought in the Sahel region
of Africa to ecosystem changes in the Nordic Seas. It has been rec-
ognized that there could be great utility in developing a capability
to predict such fluctuations, although the degree to which decadal-
scale climate prediction is possible is an open scientific question.

Associated with the fifth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC AR5), a number of modeling
centers around the world will conduct a suite of decadal-scale pre-
diction experiments. The various models will be initialized with
estimates of the observed climate system and then integrated for-
ward in time to attempt predictions of decadal-scale climate fluc-
tuations. Much of the potential predictability lies in the state of the
ocean, and thus ocean temperature and salinity will be key vari-
ables for initializing the models. The technique for initializing
these simulations will vary among the modeling groups. These
techniques include using output from (a) ocean-only assimilation
systems, (b) fully coupled ocean–atmosphere assimilation systems,
(c) and ocean simulations forced by estimates of past surface flux
forcing. In addition, some groups employ an anomaly technique
in which observed anomalies (rather than the full fields) are put
into the model in an attempt to minimize the impact of model bias
on the predictions. All of these techniques start predictions from
estimates of the observed state of the climate system while
attempting to minimize the inevitable shock to the system that
comes from inserting observations into the model. In addition to
initialization from the observed state, all of the model simulations
should include the effects of time-varying radiative forcing.

Hindcasts will also be conducted in which the models are initial-
ized from past observed states. The hindcasts are then compared to
observations for the last several decades in order to evaluate any
potential skill in such decadal predictions. However, the changing
nature of the climate observing system over that period will com-
plicate interpretation of these results. In particular, since a substan-
tial component of any decadal-scale predictability in the climate
system may arise from the ocean, changes in the ocean observing
system may be crucial. The advent of ARGO observations over the
last decade, which provide a near global set of observations of tem-
perature and salinity over the top 2000 m of the ocean, may be cru-
cial for achieving reliable decadal predictions.

The outcome of these suites of experiments will be an initial
assessment of the predictability of the climate system on decadal
time scales, as well as an initial set of such predictions. As part of
the international protocol for these experiments, the output from
these models will be made publicly available. It is hoped that as mod-
els and observing systems improve we will be able to increase our
ability to predict decadal-scale climate fluctuations, and that such
predictions will be of use in assessing any ecosystem impacts.

3.3. Earth system model simulations

One of the primary simplifications of the climate system in the
physical climate models described in Section 3.1 is that the dynam-
ics of the land and ocean biosphere and carbon reservoirs are not
explicitly modeled. Fluxes between the atmosphere, ocean and
land carbon reservoirs significantly impact the accumulation of
CO2 in the atmosphere (Sabine et al., 2004; Denman et al., 2007).
Physical climate models must rely upon imposed scenario-based
atmospheric CO2 trajectories that include assumptions concerning
the behavior of the land, ocean, and atmospheric carbon reservoirs.
Earth System Models (ESMs) address this limitation by adding
explicit models of the terrestrial and oceanic biosphere to the
ocean, ice, atmospheric, and land hydrology components of the
physical climate models and tracking the carbon in each reservoir.

This approach ‘‘closes’’ the carbon cycle: given a set of carbon
emissions and an initial carbon inventory, ESMs dynamically re-
solve the partitioning of carbon between the land, ocean, and
atmosphere; model the transformations within each component;
and conserve total carbon.

ESMs offer two potentially substantial advantages over physical
climate models for predicting the response of LMRs to climate
change. First, the explicit ocean biosphere provides estimates of a
wide range of ocean chemical and biological properties (e.g., oxy-
gen, alkalinity, primary and secondary production). This allows
the direct simulation of important ecological phenomena such as
ocean acidification, hypoxia, and anoxia. Also, biological produc-
tion metrics often have stronger empirical and mechanistic
links to LMRs than physical properties (Iverson, 1990; Ware and
Thompson, 2005). However, present formulations of marine
ecosystem dynamics within ESMs emphasize broad global-scale
patterns in carbon and nutrient cycling. They feature detailed res-
olution of nutrient dynamics, primary production and phytoplank-
ton physiology, but relatively simple representations of marine
food web dynamics (Aumont et al., 2003; Moore et al., 2004).
Addressing this limitation within ESMs by making food web inter-
actions more explicit and comprehensive would further enhance
their utility for LMR applications by allowing the flow of energy
to higher trophic level organisms (e.g., fisheries) in the ocean to
be diagnosed in more detail. However, it is also notable that mar-
ine ecosystem models within ESMs are designed for robust global
performance and may thus omit aspects of regional ecosystem
dynamics that may be relevant to LMRs. Computational advances
should ameliorate this limitation, but ESMs will likely lag behind
regional model simulations in terms of the extent to which de-
tailed, region-specific ecology can be captured.

A second potential advantage of ESMs for LMR applications is
the ability to better resolve the dynamics governing exchanges of
carbon and nutrients between land and the coastal ocean which
are strongly impacted by land-use, vegetation types, and precipita-
tion patterns (Green et al., 2004; Seitzinger et al., 2005). Estuaries
modulate these exchanges and provide essential habitats for many
LMRs, including the early life stages of many species harvested on
the continental shelf or in oceanic waters (see Section 2.1). As is
the case with present ocean ecosystem models in ESMs, present
terrestrial biosphere models emphasize very broad-scale land-use
and vegetation patterns that shape global climate – only very large
watersheds are resolved, and localized human impacts are omitted.
However, as computational obstacles are removed, ESMs provide
the necessary framework to comprehensively simulate the impacts
of climate change and human activities on estuarine systems and
the LMRs they support.

4. Case studies

Sections 2 and 3 have provided broad overviews of the dynam-
ics of LMRs and climate models. In this section, we rely upon this
baseline of common understanding to present examples of the
coupling of predictive LMR models and climate models to make
statements about the impact of climate on LMRs. These case stud-
ies illustrate a range of potential approaches, including direct use
of climate model output, statistical downscaling, and dynamical
downscaling. A range of LMR models are also used, including sim-
ple extensions of traditional stock assessment models to relatively
sophisticated and highly resolved ecosystem models. Each case
study includes a description of the coupling of LMR and climate
models and a summary of the main results.

As with the climate projections, it is difficult to directly assess
confidence in these LMR projections because they are made over
many decades and for a period over which there are no precise past
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analogs (Section 3, Randall et al., 2007). Confidence must instead be
built upon the degree to which models rely on robust and well-sup-
ported ecological and physiological relationships and on the ability
of models to match past observed LMR responses to climate. This
process is made difficult by both the complexity of ecosystem
dynamics and models (Sections 2.1 and 2.3) and the limitations of
the observations (Section 2.3). While ensemble methods (Sec-
tion 3.1.2) provide a means of exploring some aspects of projection
uncertainty, there is a general need for more quantitative measures
of confidence for both climate and LMR projections (see Section 6).
For now, each of the case studies below will conclude with a largely
qualitative discussion of projection limitations.

4.1. Projections of global fisheries biodiversity and catch

Cheung et al. (2009, 2010) used IPCC-class physical climate
models to examine the questions of how marine climate change
may affect global patterns of marine biodiversity and potential
fisheries catch. The global pattern of marine biodiversity is deter-
mined by the biogeography of marine species which is strongly re-
lated to physical conditions of the ocean. Moreover, maximum
potential catch of a fish stock is shown to be dependent on the
range area of the stock and the primary production therein. Cli-
mate change may lead to changes in ocean productivity as well
as the range of fish stocks resulting in a shift in the global pattern
of potential fisheries catch. Models were thus developed and ap-
plied to project future changes in marine biodiversity and fisheries
catch in the world ocean (Cheung et al., 2009, 2010).

A dynamic bioclimate envelope model was developed to exam-
ine the potential ecological responses of a wide variety of marine
animals (over 1000 species of marine fish and invertebrates,
Cheung et al., 2008a, 2009). In this model, current species distribu-
tion of the studied animals, expressed as relative abundance in a
0.5! latitude ' 0.5! longitude grid of the world ocean, are predicted
by an algorithm described by Close et al. (2006) with modifications
from Lam et al. (2008). Biological data were obtained from
global databases such as FishBase (www.FishBase.org), SeaLifeBase
(www.SeaLifeBase.org) and the Sea Around Us database (www.
seaaroundus.org). Preferences to environmental conditions, such
as temperature, salinity, and habitat types, are inferred from over-
laying distribution maps with gridded physical condition data of
the ocean as predicted by one of the IPCC-class coupled AOGCMs
– NOAA’s GFDL CM2.1 (Delworth et al., 2006). Changes in distribu-
tion of relative abundance of each studied species were then sim-
ulated using a dynamic bioclimate envelope model developed by
Cheung et al. (2008a). This model simulated annual changes in dis-
tribution of the studied species forced by changes in physical con-
ditions including sea water temperature (surface and bottom),
salinity, surface currents and sea-ice extent that were projected
from the NOAA’s GFDL CM 2.1. Specifically, the movement of the
distribution range was determined by the suitability of each
0.5! ' 0.5! cell relative to the species’ environmental preferences,
larval dispersal along ocean currents and migration of adults.

Based on the outputs from the dynamic bioclimate envelope
model, Cheung et al. (2009) projected that biodiversity impact
would be highest in the high latitudes, particularly the Polar
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Fig. 7. Predicted global pattern of species invasion (a) and local extinction (b) in 2050 relative to 2000 due to range shifts in marine metazoans SRES A1B scenario. The values
are expressed as proportion relative to the initial species richness in each 300 ' 300 cell. This is based on an analysis of 1066 species of marine fish and invertebrates (redrawn
from Cheung et al. (2009)).
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region, the tropics and semi-enclosed seas (Fig. 7). Such impact is
expressed in terms of species turnover (i.e., sum of species invasion
and local extinction from an area). Specifically, invasion is most in-
tense in the Arctic and the Southern Ocean while local extinction
concentrates in the tropics, semi-enclosed seas and the sub-polar
regions. Moreover, the distribution ranges of fish and invertebrates
are projected to shift generally polewards.

In addition, Cheung et al. (2010) used scenarios of future
changes in physical and biological conditions of the ocean to pre-
dict how maximum potential catch may re-distribute as a result
of shifts in the distribution of exploited species and primary pro-
ductivity. These predictions are based on empirical relationship be-
tween potential catch, habitat area and primary productivity
(Cheung et al., 2008b) and predict a decline in potential catch if
species’ habitat or primary productivity therein decreases, and vice
versa. Changes in species’ distribution range were projected by the
dynamic bioclimate envelope model (Cheung et al., 2008b, 2009)
while primary productivity was predicted by empirical equations
(Sarmiento et al., 2004) with physical data projected by the NOAA’s
GFDL CM 2.1. In spite of all caveats and a number of scientific
uncertainties, a clear pattern emerged, i.e., maritime countries lo-
cated in low latitudes (e.g., Malaysia, or Indonesia) will lose poten-
tial yield (and their fisheries will suffer), while higher-latitude
countries (e.g., Iceland and Norway), will gain potential yield and
their fisheries might benefit (Cheung et al., 2010).

Outputs from the GCM are critical for the global projections of
climate change impacts on marine biodiversity and fisheries; how-
ever, there are various uncertainties resulting from limitations im-
posed by GCM outputs used by the study. The climate model used
by Cheung et al., 2009, 2010) is relatively reliable at predicting
long-term and large-scale trends and patterns of changes in ocean
conditions. However, model skill decreases at smaller spatial and
temporal scales (Section 3). The projected biodiversity and fisher-
ies impacts, which are driven by the GCM outputs, inherit such
properties. On the other hand, the targeted temporal and spatial
scales for the global models of marine biodiversity and fisheries
parallel those for the GCM. Thus, scale issues of the GCM outputs
do not invalidate the main conclusions from these analyses. A
greater impediment to the analyses on marine biodiversity and
fisheries is the limited representation of dynamics in coastal and
continental shelf regions by the GCM (Section 3.1.1, Fig. 3). These
are particularly important for distribution of many exploited mar-
ine species and their potential catch. This renders projections of
biodiversity at scales finer than the broad latitudinal patterns dis-
cussed above and fisheries impacts in coastal region uncertain.
Moreover, some of the predicted physical variables that are impor-
tant to determine habitat suitability for many marine species, such
as sea bottom temperature, may be particularly uncertain. Biocli-
mate models also have limitations (Brander, 2009). For example,
the present bioclimate envelope model does not account for spe-
cies interactions and potential food web changes that may also im-
pact fisheries biodiversity and ranges. Currently, a new version of
the dynamic bioclimate envelope model is being developed that
account for effects of ocean biogeochemistry such as oxygen level
and pH on the eco-physiology and distribution of marine fish. Such
a model would require the new generation of Earth System Models
(ESMs, Section 3.3) which have explicit biogeochemical compo-
nents for predicting such variables at a global scale.

4.2. Bigeye tuna in the Pacific Ocean

Bigeye tuna (Thunnus obesus) are large (up to 200 kg) highly
migratory fish that occupy tropical and temperate oceans and
can live for over 10 years. The broad ocean-basin scales of bigeye
tuna habitat and migration are consistent with those resolved by
climate models. Pacific Ocean bigeye tuna populations support a

large and extremely valuable fishery. Landings over the last
10 years in the tropical Pacific have been valued at between 500
million to 1 billion US dollars (www.seaaroundus.org).

The behavior, life cycle, and survival of bigeye tuna has been re-
lated to a range of environmental and ecological factors. Larval and
juvenile stages need warm water (>25 !C) to maintain their body-
temperatures. However, as they become larger, they must move to-
ward cooler habitats to prevent overheating (Holland et al., 1992;
Brill, 1994). Bigeye tuna also avoid regions where dissolved oxygen
falls below 1 ml/L. The diet of adult bigeye tuna includes a large
spectrum of micronekton ranging in size from several millimeters
(e.g., euphausids and amphipods) to several centimeters (shrimps,
squids, and fish, including their own juveniles). Movement during
much of the adult stage is dictated by the suitability of a habitat’s
food resources, temperature and oxygen. Adult tuna must return to
warmer waters to spawn, and spawning success depends on tem-
perature, the availability of food for larvae (often microzooplank-
ton), and the abundance of predators of larvae (large
zooplankton and micronekton). Mortality varies by life stage and
includes both natural losses (predation, starvation, disease, senes-
cence) and fishing mortality.

Mechanistic predictions of the impact of climate change on big-
eye tuna requires a model capable of capturing the range of inter-
actions with the ecosystem and the environment outlined above.
Lehodey et al. (2010b) combined a climate model (IPSL CM4, Marti
et al., 2006), which included an embedded biogeochemical model
(PISCES, Bopp et al., 2001), with the latest version of the Spatial
Ecosystem and Population Dynamics Model (SEAPODYM, Lehodey
et al., 2008; Senina et al., 2008) to provide preliminary forecasts of
the response of Pacific bigeye tuna to climate change (in absence of
fishing) and to diagnose the underlying dynamics of the response.
SEAPODYM is designed as a general framework for integrating bio-
logical and ecological knowledge of tuna species and other top-
predator species with a comprehensive description of the pelagic
ecosystem, including several functional groups of micronekton
(Lehodey et al., 2010a). The IPSL CM4 climate model provided
physical fields required by both PISCES and SEAPODYM (e.g., tem-
perature, currents), the biogeochemical model provided estimates
of oxygen and primary production to SEAPODYM, and SEAPODYM
provides estimates of both the adult tuna forage base (i.e., micro-
nekton) and size- and age-structured tuna populations in space
and time. The biomass of each cohort within the tuna population
is tracked as a spatially distributed density of fish using a system
of advection–diffusion–reaction equations. The SEAPODYM calcu-
lations are done ‘‘off-line’’, monthly inputs from the IPSL climate
model and the PISCES biogeochemical model are used to drive
SEAPODYM, but there are no feedbacks from SEAPODYM to PISCES
or the IPSL climate model. This ‘‘off-line’’ approach provides a com-
putational savings by not requiring the global simulations to be re-
run to force SEAPODYM, though the lack of feedbacks between
SEAPODYM and PISCES can be a source of inconsistencies between
the two models.

As far as possible, the mechanisms within SEAPODYM rely on
relative rather than absolute parameterization. For example,
movements are based on gradients in habitat. The ratio between
primary production (the proxy for larval food) and production by
mid-trophic level organisms (consumers of larvae) is used to rep-
resent the trade-off between availability of prey and exposure to
predators in defining favorable spawning habitat. This approach
minimizes the impact of magnitude biases in the IPSL CM4/PISCES
projection while making the model’s representation of spatio-
temporal gradients more critical.

Though SEAPODYM contains a relatively small number of
parameters (i.e., 15 to describe the entire spatial population
dynamics of one species), some have limited constraints (e.g., nat-
ural mortality). The model was thus calibrated against fisheries
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catch data using data assimilation techniques (Senina et al., 2008)
for the historical period and with several environmental reanalyses
from coupled ocean–biogeochemical models. Lehodey et al.
(2010b) then used the IPCC SRES A2 projection of the IPSL climate
model to make a preliminary assessment of the bigeye tuna re-
sponse to climate change in the 21st century. Spawning habitat,
which requires high temperatures, was predicted to expand in
the eastern tropical Pacific (ETP) and in sub-tropical areas (Fig. 8,
left panels). The adult feeding habitat also strongly improves in
the ETP (Fig. 8, right panels). This is due to an increase in dissolved
oxygen in sub-surface waters that increases the accessibility of
micronekton function groups that reside deeper in the water col-
umn to feeding bigeye tuna adults. Conversely, in the western
tropical Pacific (WTP) the temperature becomes too warm for big-
eye spawning, and larval concentrations near the equator decrease
(Fig. 8, left panels). This is partly compensated for by an increase in
the larval biomass in sub-tropical regions. However, adult mortal-
ity also increases in the WTP due to excessively warm surface tem-
peratures, decreasing oxygen concentration in the sub-surface and
less food. These conditions drive the movement of surviving fish to
the ETP, and the adult biomass in the WTP starts to decline by the
end of the century. Fishing in the WTP is likely to exacerbate this
decrease if it is continued over the next century.

There were several challenging aspects of the coupling between
climate models and highly mechanistic ecosystem models de-
scribed in this case study. First, the calibration of the SEAPODYM
model used for projection was done using fisheries catch data from
1985 to 2000 and compared against results from the IPSL CM4
model during the historical period. As described in Section 3, ENSO
timing during the historical period of century-scale climate projec-
tions will not match the timing of ENSO events from 1985 to 2000
(see Section 5 for further discussion of calibration using global

ocean-ice simulations forced by atmospheric reanalysis which
may ameliorate this issue). Second, while the use of the highly
mechanistic SEAPODYM model provided additional insights into
the dynamics driving simulated changes in bigeye tuna distribu-
tions, it also imposed additional computational demands (e.g., spa-
tially explicit tuna calculations) that restricted the number of
climate simulations considered and the exploration of uncertainty.
This is a common trade-off when using more complex ecological
modeling approaches (Section 2). Lastly, while SEAPODYM in-
cludes many food web interactions and constraints due to physio-
logical responses under different feeding habitats and food
requirements, notable omissions remain. For example, feedbacks
of fish communities on biogeochemical dynamics are not resolved.

4.3. Climate impacts on Alaskan ecosystems and the northern rock sole

The waters off the coast of Alaska support the largest groundfish
fishery in the United States as well as large commercial fisheries
for salmon, herring, Pacific halibut and Tanner and King crabs.
The groundfish fisheries are carefully managed, and none are clas-
sified as overfished (Worm et al., 2009). However, notable ecosys-
tem shifts in response to climate variability and change have been
observed in Alaskan waters (Grebmeier et al., 2006), and incorpo-
rating climate information into resource management is essential
for continued effective management. A number of approaches are
being pursued, including statistical (A’Mar et al., 2009; Hollowed
et al., 2009) and dynamical downscaling (Sigler and Harvey,
2009). This case study will focus on general aspects of the ap-
proaches being applied for climate impacts on Alaskan ecosystems
and the particular example of northern rock sole on the eastern
Bering Sea shelf presented by Hollowed et al. (2009).

Fig. 8. Density distribution of Pacific bigeye tuna larvae (left, in number per km%2) and adult biomass (right in tons per km%2) predicted with SEAPODYM in January of year
1900, 2000, and 2099 (from top to bottom) from the IPSL-PISCES climate simulation (IPCC SRES-A2 scenario). Reprinted from Lehodey et al. (2010b).
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Hollowed et al. (2009) proposed a framework for modeling fish
and shellfish responses to future climate change that is being ap-
plied in Alaskan waters. There are six steps that are briefly de-
scribed here. First, mechanisms that explain environmental
influences on LMR population dynamics are identified; second,
the environmental variables for which projections are needed to
model the LMR response are identified; third, the feasibility of
using IPCC models to predict these variables is assessed; fourth,
IPCC models hindcasts of the variable(s) are compared with ob-
served 20th century conditions to select and weigh IPCC models;
fifth, projections of the environmental variables from the weighted
ensemble of IPCC models are incorporated into stock projection
models; and sixth, the effects of changing environmental condi-
tions on harvest strategy are evaluated.

A notable aspect of the proposed framework is the weighting of
IPCC models based on their fidelity with observed conditions for
the environmental variables being projected during the historical
period of the climate simulations. This is based on the understand-
ing that different models have different strengths and weaknesses,
and the assertion that better models for particular parameters and
particular regions should receive greater consideration. The proce-
dure suggested by Hollowed et al. (2009) is an adaptation of the
method developed by Raftery et al. (2005) for short-term weather

forecasts. The weights can reflect multiple criteria, including
the ability to reproduce the mean values, variances, trends and
seasonality. However, as discussed in Section 3.1.4, a linkage be-
tween climate model fidelity to historical observations at regional
scales and the quality of climate change predictions over century-
scales has not been established. The weighting scheme suggested
by Hollowed et al. (2009) thus continues to be evaluated against
observations and approaches using the full ensemble in order to
refine the methodology, assess the added value of model weight-
ing, and test the rationale for the weights.

Hollowed et al. (2009) provided an example application of this
framework to northern rock sole (Lepidopsetta polyxystra) in the
eastern Bering Sea. Northern rock sole spawn between February
and March, and larvae are carried by ocean currents from April to
June. Wilderbuer et al. (2002) found that wind-driven advection of
larvae toward highly productive near-shore nursery areas
coincided with above-average recruitment. This suggests that the
impact of climate change on northern rock sole is linked to
climate-driven changes in wind patterns. The ensemble of IPCC
models used to predict rock sole was first restricted to 12 IPCC
AR4 models that replicate the essential characteristics of the Pacific
Decadal Oscillation (Overland and Wang, 2007). These 12 models
were then weighted according to their ability to model mean

Fig. 9. (A) Weights of various IPCC AR4 models used in forming the ensemble mean using a Bayesian model averaging approach. The criteria used for evaluating models were
the accuracy of their hindcasts in terms of reproducing the mean, variance, and trend in the observed wind of the Bering shelf over the last half of the 20th century. (B)
Predicted mean and standard deviation of the longitudinal endpoint of projected larval drift from spring winds for 2001–2050. Background shading reflects classification of
endpoints according to spring climate condition: on-shelf drift (lightest shading), off-shelf drift (darkest shading), and mid-shelf drift (intermediate shading). Redrawn from
Hollowed et al. (2009).
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April–June winds on the Bering Sea shelf and the inter-annual vari-
ance in seasonal mean winds (Fig. 9A) and these were used to project
winds out to 2050. Winds were then converted to an ending longi-
tude for the surface-drifting larvae based on a simple transport mod-
el that indicates a slight tendency toward increased shoreward
transport (Fig. 9B). The future production of rock sole was then pre-
dicted using an empirical recruitment function with environmental
terms added. After accounting for recruitment in a given wind re-
gime, the analysis suggested that rock sole would not be substan-
tially affected by climate-driven changes in larval dispersal patterns.

There were several challenging aspects and limitations associ-
ated with this method of the coupling between climate models
to stock projection models in addition to the aforementioned chal-
lenges associated with model weighting. As was the case for the
stock–recruitment relationships discussed in Section 2.3.1, a con-
siderable amount of recruitment variability cannot be explained
by the emergent relationships between the environment and

northern rock sole recruitment (A’Mar et al., 2009; Hollowed
et al., 2009). The analysis was only possible because the variables
needed to predict recruitment were reasonably well estimated by
IPCC-class climate models. However, proxy variables may be nec-
essary in many cases (e.g., see Section 4.4). The weighting process
becomes more complex when multiple predictor variables are
needed. Lastly, the approach could not address the potential
impacts of and uncertainties in fishing patterns, management,
and the socioeconomic factors that govern them.

4.4. Atlantic croaker along the east coast of the United States

Hare et al. (2010) used a statistical downscaling approach to
simulate the effect of climate change on the abundance and distri-
bution of Atlantic croaker along the eastern seaboard of the United
States. The Atlantic croaker is a relatively small (1–2 kg as an
adult), demersal fish inhabiting inshore coastal waters. Atlantic
croaker supports an active yet highly variable commercial and rec-
reational fishery in this region, with yearly landings of &8000 met-
ric tons, worth an estimated US $9 million (NMFS, 2008).

Variability in Atlantic croaker catch is thought to be primarily due
to differences in the survival of estuarine juvenile stages: cold water
temperatures lead to lower juvenile survival and ultimately lower
recruitment (Hare and Able, 2007). This has been linked to temper-
atures falling below the physiological thermal tolerance of juvenile
croaker (see also Norcross and Austin, 1981; Lankford and Targett,
2001). Estuarine dynamics are generally not resolved or very coar-
sely resolved in the physical climate models used in IPCC AR4 (Sec-
tion 3.1.1). However, estuarine water temperatures are closely
linked to surface air temperatures in the winter owing to efficient
heat exchange in these shallow systems (Roelofs and Bumpus,
1953; Taylor et al., 1957; Hettler, 1992). Winter surface air temper-
atures are strongly coherent across the eastern United States (Joyce,
2002), thus providing a large-scale indicator of estuarine conditions
that is resolved by climate models. Past estimates of Atlantic croaker
recruitment were related to minimum winter air temperatures from
a historical reanalysis of atmospheric temperature (Fig. 10A). This
relationship was then incorporated into the stock–recruitment
function (Eq. (3)) of an extended stock assessment model (ESAM,
Section 2.3.1). This ESAM was used to project croaker populations
forward for three emissions scenarios used in IPCC AR4 (commit,
B1 and A1B). These scenarios correspond to atmospheric CO2 in-
creases to 350, 550, and 720 ppm by the end of the 21st century.

The analysis of Hare et al. (2010) focused on Atlantic croaker
stocks in the mid-Atlantic region of the United States. While surface
air temperatures are broadly coherent over the eastern US, there is
considerable model bias and inter-model spread at this regional
scale (Sections 3.1.3 and 3.1.4). Two steps were taken to address
these issues. First, climate models were bias corrected by removing
the mean surface air temperature bias in retrospective simulations.
Second, the simulations from an ensemble of 14 climate models with
all three emissions scenarios and retrospective results available
were used to test the robustness of findings. A range of fishing mor-
talities (F) was also included in the simulations. The effect of climate
change was assessed by averaging predicted changes between 2010
and 2100 and comparing them with present values which removes
the effects of climate variability and isolates the climate change sig-
nal which AR4 models simulate deterministically (Section 3.1.1). At
current levels of fishing mortality (F = 0.1 year%1), climate change is
predicted to increase the spawning stock biomass of croaker in this
region (Fig. 10B). The predicted increase in biomass becomes smaller
as F increases, but generally ranges between 60% and 100% of current
levels, which translates to a 30–100% increase in the maximum
sustainable yield (Fig. 10C). These results suggest a dramatic change
in biological reference points used for management as a result of cli-
mate change.

Fig. 10. Predicting climate impacts on the Atlantic croaker. Top panel: the effect of
minimum winter air temperature on recruitment. Middle panel: the predicted
spawning stock biomass of Atlantic croaker for each of 14 different bias-corrected
climate model projections and three different scenarios for a fishing pressure (F) of
0.1 day%1. Lower panel: The predicted yields for each of the three climate scenarios
and the present yield as a function of fishing mortality rate. The maximum sustainable
yield for each case is marked with a triangle. The shaded regions indicates the range of
results across the multi-model ensemble. Redrawn from Hare et al. (2010).
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Hare et al. (2010) also developed an empirical spatial distribu-
tion (habitat) model for croaker that predicts the center and north-
ern extent of range and spawning stock biomass based on winter
surface air temperatures and spawning stock biomass. This model
was forced with the same 14 model, 3 scenario ensemble described
above and the abundance output from the ESAM. A northward shift
of 50–100 km in the population was predicted. An issue not ad-
dressed in this study is potential changes in Atlantic croaker in
the southern part of the range; decreases and northward shifts in
the south may be balanced by increased productivity further north.

The Hare et al. (2010) case study provides an example of the use
of statistical downscaling, ensemble approaches, and simple bias
corrections to adapt IPCC-class climate models for assessing the
impact of climate change on Atlantic croaker. The translation of
predicted responses to metrics presently used in management
(i.e., Fig. 10c) is particularly noteworthy and illustrative of the
importance of incorporating climate information into manage-
ment. The primary limitation of the analysis is that both the ESAM
and distribution model rely on empirical relationships between ba-
sic, large-scale environmental variables and complex emergent
LMR responses. As discussed in Section 2, such empirical relation-
ships can break down. Greater mechanistic resolution of the inter-
actions between croaker and coastal and estuarine processes could
enhance the analysis and reveal new patterns of change. This
would require enhancements to both the croaker and climate mod-
els. However, the mechanistic underpinnings of the key relation-
ships used in this study – that between winter air temperature
and estuarine water temperature, and that between estuarine
water temperature and juvenile survival, have been examined in
both the laboratory and the field (reviewed by Hare and Able,
2007) and suggest that the mechanisms underlying the coupled
population–climate model may remain robust.

4.5. Scenarios for North Atlantic cod over the next 20–50 years under
climate change

The ICES/GLOBEC Cod and Climate Change program held a
workshop in June 2008 to develop projections of possible stock
dynamics for cod over the next 20–50 years (Drinkwater et al.,

2010b). Experts in global and regional climate modeling, including
decadal prediction, provided climate projections to drive models of
biological dynamics, taking into account not only the direct effects
on cod but also indirect effects on prey (including zooplankton),
predators and competitors. Several types of model (mechanistic
coupled physical–biological, statistical multivariate autoregressive,
mechanistic stochastic) were applied to reconstruct past time ser-
ies of observations and to project future changes. The overall con-
clusion from the workshop was that we are not yet able to produce
credible projections of cod stock dynamics for the next 20–50 years
due to limitations in global and regional climate models and to
inadequate knowledge of biological responses.

An analysis of changes in distribution of North Sea cod over the
past century explored the effects of fishing, temperature, winds
and other environmental variables. Distribution changes have been
large, as shown by fishing surveys and commercial catches, how-
ever despite good information on climate and other possible fac-
tors, it is not possible to choose among a number of plausible
explanations (climate, fishing pressure, meta-population dynam-
ics, biological interactions with prey fields). Our inability to explain
such past patterns of change in a well-studied area mandates cau-
tion with regard to the credibility of future projections, even if we
had reliable regional climate projections, due to biological and
environmental complexities.

The Baltic Sea provides another regional example that illus-
trates the type of insight to be gained from effective linking of cli-
mactic and biological models while also revealing the limitations
of present models. Climate projections for the Baltic in the 21st
century were based on an assessment using dynamic and statisti-
cal downscaling (BACC, 2007). A stochastic food web model (Linde-
gren et al., 2009) was used to quantify the interactions between the
three major fish species in the Baltic (cod, sprat and herring) as
well as their prey, major environmental drivers and fishing pres-
sure. Salinity plays a greater role than temperature in the biological
response of cod in the Baltic and the projected changes in salinity
show significant differences, depending upon which global model
is used to force the regional scenarios (Meier et al., 2006). A signif-
icant decrease in salinity (outside the present day climatic variabil-
ity) is found only for the runs forced by one AOGCM (ECHAM4)
which is also the only AOGCM showing statistically significant
change in windfields in this region. The pattern and strength of
wind forcing and the magnitude of precipitation are critical for Bal-
tic salinity and are not represented consistently or in detail in
AOGCMs. The likelihood that cod will no longer be able to repro-
duce in the Baltic depends critically on whether and by how much
the salinity decreases. The stochastic food web model provides
valuable insight into fisheries management strategy that may pre-
vent cod biomass from dropping below the limit reference value as
salinity declines (Lindegren et al., 2010, Fig. 11), but the likelihood
of such a salinity decline cannot be quantified from current climate
models.

The Baltic is a particularly difficult enclosed sea to model, but it
illustrates some of the problems in coupling from global to regional
scales and incorporating the variables (in this case salinity) that
play a dominant role in the biological dynamics. AOGCMs do not
adequately reproduce the present climate for this region, and
although it is possible to choose from among the AOGCMs those
which give a better fit, such a selection would be more credible if
based on valid structural reasons and more evidence supporting
the hypothesis that a better fit to regional dynamics implies a bet-
ter estimate of climate change trends (Section 3.1.4). The two ma-
jor modes of variability over the Atlantic Ocean over the last
century, the Atlantic Multi-decadal Oscillation (AMO) and the
North Atlantic Oscillation (NAO), are represented in AOGCMs but
their phasing and variability do not match the observed climate
well for purposes of short-term regional forecasting. (Randall

Fig. 11. The probability of Baltic cod spawning stock biomass (SSB) falling below
the limiting stock size (Blim). Decrease in salinity is relative to the mean salinity
from 1974 to 2004. The risk of falling below Blim increases rapidly and non-linearly
as salinities decrease with increasing fishing mortalities (Redrawn from Lindegren
et al. (2010)).
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et al., 2007). Models that assimilate recent climate data (and in-
clude the decadal modes) show useful forecasting skill, at least
over periods of a few years (e.g., Smith et al., 2007, Section 3.2),
and could provide guidance for fisheries management on likely
trends in fish stock dynamics.

4.6. End-to-end model of sardine and anchovy

Landings of sardines show synchronous variations off Japan, Cal-
ifornia, Peru, and Chile, with populations flourishing for 20 to
30 years and then practically disappearing for similar durations;
periods of low sardine abundance have coincided with increases in
anchovy populations (Lluch-Belda et al., 1989, 1992; Schwartzlose
et al., 1999). The landings data have been related to the low-
frequency component of different climate series, including the
Pacific Decadal Oscillation (PDO) and El-Nino Southern Oscillation
(ENSO) (Chavez et al., 2003) and to the low-frequency signature in
global ocean temperature (Tourre et al., 2007). Better understanding
of the mechanisms underlying these historical low-frequency
fluctuations will provide critical information for evaluating the skill
of coupled biophysical models and for forecasting future effects of
climate change on these important LMRs.

As part of an ongoing project, an end-to-end model is being
developed for sardine and anchovy in the California Current eco-
system. While this effort is in a proof of principle phase, it is in-
cluded here to illustrate a likely direction that modeling climate
effects on LMRs may take over next 10–20 years. The approach is
to fuse the ROMS (Regional Oceanographic Modeling System,
Shchepetkin and McWilliams, 2005) circulation model, the NEM-
URO-NPZ lower trophic level model (Kishi et al., 2007), a full life
cycle individual-based model that simulates multiple fish species
(Rose et al., 1999), and a bioeconomics model of the fishing fleet.
Simulations for 1948–2006 are underway, which include historical
variation in climate and several ENSO events. All of the submodels
can be solved simultaneously, and downscaled results from
AOGCMs can be used as input to the ROMS model, thereby allow-
ing true climate to fishers simulations and permitting, if necessary,
explicit representation of feedbacks among all of the submodels.
The ultimate goal is to be able to realistically simulate the relative
effects of bottom-up (climate-induced), wasp-wait (food web), and
top-down effects (predation by apex LMRs; fishing, Cury et al.,
2008) on key middle-level forage fish species in the ocean food
web.

5. Recommended practices

The previous sections of this paper have illustrated a broad
range of issues surrounding and strategies for using IPCC-class cli-
mate models to predict the impacts of climate change on LMRs.
Each strategy has strengths and weaknesses and the best approach
will be problem-specific, but it is possible to provide general guide-
lines and highlight critical considerations for identifying effective
approaches. A first step is to ensure that the LMR prediction
objectives are consistent with the capabilities and objectives of
IPCC-class climate models. In most cases, this consistency means
multi-decadal to century-scale projections of climate change
impacts on LMRs due to greenhouse gas accumulation in the atmo-
sphere (Section 3.1). Spatially, changes in many climate variables
are more coherent across climate model projections at global to
ocean-basin scales and there can be significant differences be-
tween climate model projections at local and regional scales (e.g.,
500–1500 km). IPCC-class climate models do often capture the sta-
tistics of climate variability modes (e.g., ENSO, PDO, NAO) and it is
possible to use IPCC-class climate models to study the impact of
climate variability on LMRs. However, century-scale simulations

from IPCC-class climate models are not designed to match the
phase of climate variability modes and thus cannot be used to pre-
dict their evolution for the coming decades. Decadal-scale predic-
tion experiments being conducted as part of the IPCC AR5 may
help address this limitation by providing estimates of the state of
climate variability modes over the next 1–10 years (see Sections
3.2 and 6).

Information from IPCC-class climate models can be integrated
with any of the range of approaches described in Section 2.3, and
the processes hypothesized to be critical for the LMRs of interest
should dictate the modeling approach. A primary concern with
simple LMR models for climate change applications is a common
reliance on highly empirical relationships between climate and
emergent LMR responses. Such relationships may break down as
climate changes (e.g., Section 2). Hypotheses for the mechanisms
underlying these relationships should be stated and supported so
that some assessment of their robustness under new climate con-
ditions is possible. More complex and mechanistic models can ad-
dress this issue but require information at the appropriate space
and time scales (Sections 2.1 and 2.2) to constrain and validate
the model. In addition, exploring a range of possible outcomes in
complex models may pose a computational challenge for climate
change projections. The trade-offs between simple and complex
models supports the value of a ‘‘two-pronged’’ approach similar
to that articulated by Hollowed et al. (2009). Progress can be made
by incorporating information from IPCC-class climate models into
relatively simple to intermediate complexity stock assessment
and ecosystem models (e.g., case studies 1–5), while efforts to de-
velop, constrain, and couple comprehensive, ‘‘end-to-end’’ models
with climate models continue (e.g., case study 6).

The appropriate number of climate model projections to con-
sider is also contingent upon the objectives of the analysis. Focused
diagnosis of the LMR response to a climate projection from a single
model is appropriate for studies that emphasize detailed process-
level analysis or rely on large-scale climate change features that
are robust across models. Multi-model ensembles provide an effec-
tive means of defining a range of possible climate impacts and the
average of many climate models has been shown to be closer to ob-
served trends in several climate variables than any single model
(Section 3.1.4). Refining multi-model projections by weighting or
selecting models based on their representation of historical climate
conditions is an active area of research, and there are no widely ac-
cepted practices for doing so. Recent studies have suggested weak
linkages between a climate model’s representation of the mean cli-
mate state and the model’s ability to capture the historical climate
change trend (Section 3.1.4). Any model weighting or selection
scheme should be viewed as an important scientific aspect of a
study and should be supported by both empirical evidence of in-
creased skill at matching climate change trends over the historical
period and process-level knowledge of the deficiencies in down-
weighted models. The sensitivity of key results to the weighting
scheme versus the use of a full ensemble should also be assessed.
Lastly, care must also be taken to avoid choosing model weights
based on random phase differences in climate variability. Any
match with changes in the phase of PDO over the last 10 years in
a century-scale climate simulation, for example, is purely coinci-
dental (Section 3.1). Evaluating models in ways that reward such
a random match may result in an otherwise poor model playing
a disproportionate role in an LMR projection.

Adjusting projections using simple bias corrections to a climate
model’s mean state for a given variable should be done with cau-
tion. Such adjustments assume that the projected climate change
is independent of the mean climate state. Calculating the covari-
ance between the projected change and the mean climate state
across models provides one means of testing the validity of this
assumption (McAfee et al., submitted for publication). Simple bias
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corrections must also be calculated relative to long time-series to
remove any effects of out-of-phase climate variability, and sensi-
tivity of the primary results to their application should be
documented.

The lack of phase agreement of modes of climate variability in
century-scale climate simulations to those observed poses a chal-
lenge for calibrating LMR models coupled to century-scale climate
simulations. Such models should not be calibrated against observa-
tions on a year-to-year basis if climate variability is an important
mechanism driving year-to-year changes in the LMR of interest.
Evaluation metrics that are not compromised by phase differences
in climate variability modes, such as the mean and variance of rel-
evant quantities over many years or the mean and variance of
quantities during similar phases of the prominent modes of cli-
mate variability, should be used instead. If a sufficient time series
is not available or if statistical properties are insufficient to evalu-
ate the model, historical ocean-ice simulations forced with atmo-
spheric reanalysis provide an alternative platform for LMR model
calibration. The atmospheric forcing used in such simulations re-
flects observed year-to-year variations in large-scale atmospheric
features driven by climate variability (Large and Yeager, 2004;
Griffies et al., 2009).

A diverse array of downscaling techniques can be enlisted in
cases where the resolution of models is not fine enough to explic-
itly capture processes critical to the LMR of interest (Section 3.1.1).
Crucial steps in establishing the plausibility of statistical downscal-
ing include identifying mechanisms that link the fine-scale fea-
tures of interest with the coarse scales of climate models,
gathering enough data to establish a statistically significant rela-
tionship, and assessing if the statistical relationship is likely to re-
main robust as climate changes. Key considerations for dynamical
downscaling include computational cost and whether the coarse-
scale forcing from climate models can be effectively coupled with
fine-scale domains. One-way dynamical downscaling allows re-
fined simulations to be run independently from global simulations
which may offer a distinct advantage for studying the impacts of
climate change on regional LMRs. However, this configuration does
omit feedbacks from the regional scale dynamics to the ocean-ba-
sin and global scales. In all cases, downscaled results are strongly
linked to the characteristics of the global, coarse-scale climate
model simulation (e.g., Section 4.5). Careful diagnosis of the char-
acteristics of the global-scale simulation in the region of interest
is an essential first step for any downscaling activity.

6. Priority developments

While coupling IPCC-class climate models and LMR models can
be challenging, substantial progress in predicting and understand-
ing the impacts of climate change on LMRs can be made using pres-
ent models and observations. There are, however, several areas
where improvements to models and observations could greatly im-
prove the capacity to predict climate impacts on LMRs. Efforts to
address these issues should be undertaken in parallel with efforts
to apply existing tools.

One of the primary limitations of many LMR models for climate
change applications is the limited mechanistic understanding of
climate-LMR links and the limited representation of these links
within models (Section 2). Uncertainties related to the use of
highly empirical relationships between climate and LMR responses
are difficult to quantify but can be large. Process-oriented field and
laboratory observations focused on understanding these mecha-
nisms and constraining their parameterization within LMR models
are needed to address this issue. Observational and modeling ef-
forts should be tightly integrated. Process-oriented observations
should focus on those processes and parameters that make large

contributions to the uncertainty in projections of the impact of cli-
mate on LMRs, and information gained from these efforts should be
continually incorporated into model projections to refine projec-
tions and reassess dominant uncertainties. Initiating this iterative
process requires initial projections to be made despite existing
uncertainties.

Understanding the linkages between LMRs and climate change
and variability requires co-occurring LMR and physical climate
observations over a broad range of spatial and temporal scales. This
will require committed maintenance of existing time series and
ocean observing systems, coordination of observational efforts be-
tween regions, and the initiation of new time series and observing
systems in regions without existing measurements. It will also re-
quire continued investment in observational technologies capable
of resolving finer-scale interactions between LMRs and their envi-
ronment and closing the scale gap between physical and biological
measurements.

Development of comprehensive, robust, and highly mechanistic
‘‘end-to-end’’ LMR models is essential for effectively integrating
the combined influence of climate dynamics, ecosystem interac-
tions, and human activities on LMRs (Sections 2.3.2 and 4.6). Crit-
ical knowledge gaps in ‘‘end-to-end’’ models need to be identified,
and more clearly defined objectives for incorporating information
from these models into management decisions are needed. While
complex end-to-end models have proven useful for providing stra-
tegic long-term advice, incorporating the information from such
models into year-to-year reference points and quotas requires
the development of rigorous testing and review procedures. This
includes augmenting data collection efforts so that the data re-
quired to support these models (i.e., constrain interactions, vali-
date dynamics) is available. The review process will require
panels with diverse expertise capable of communicating across
disciplines.

Key improvements to century-scale physical climate model
simulations for LMR applications include better resolution of
shelf-scale circulation and basin-shelf exchanges. Increases in
computing power over the next decade should enable climate sim-
ulations to be regularly run with grid resolutions comparable to
present regional ocean simulations (&10 km). Increased resolution,
in combination with appropriate changes to sub-grid-scale param-
eterizations, should help decrease model biases in some coastal re-
gions (e.g., eastern boundary upwelling regions). Model biases and
inter-model spread in climate models, however, arise from diverse
sources beyond resolution. General efforts to improve understand-
ing of climate system dynamics over a range of scales and improve
the representation of these dynamics within climate models are
essential to understanding and addressing model biases and in-
ter-model spread.

While improved climate model resolution should facilitate the
direct application of IPCC-class climate models for LMR prediction,
the large range of spatial and temporal dynamics influencing LMRs
(Section 2.1) suggests that downscaling techniques will continue to
play an important role in the prediction of climate impacts on
LMRs. Finer-resolution global simulations should facilitate dynam-
ical downscaling for continental shelves by providing boundary
conditions that better reflect shelf dynamics, bathymetry, and the
energetic ocean currents often adjacent to shelves (particularly
along the western boundaries of ocean basins). The increases in
computing power that enable finer-resolution global simulations
should also allow regional simulations to more adequately resolve
near-shore regions (e.g., estuaries) critical to the early life stages of
many LMRs.

A key limitation of century-scale climate model simulations for
LMR applications is that the simulations are not designed to pre-
dict the state of climate variability modes over the next decade.
Most LMR management plans are formulated over inter-annual
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to decadal time scales, and robust decadal-scale climate prediction
systems with defined uncertainties are essential for incorporating
climate information into LMR management. This is particularly
true for ecosystems that exhibit marked climate-driven regime
shifts on decadal time scales (Section 2.1). Decadal climate predic-
tion simulations being conducted for IPCC-AR5 will provide further
insight into the mechanisms underlying climate variability and a
comprehensive evaluation of the extent to which decadal climate
prediction can be realized with present climate models and
observations.

Continued development of Earth System Models will provide a
platform for running simulations that more fully integrate climate
dynamics with aspects of ecosystem dynamics and human activi-
ties. ESM simulations presently underway for IPCC AR5 will pro-
vide projections of numerous ecologically relevant variables (e.g.,
productivity, oxygen, alkalinity) not included in physical climate
model projections. In many cases, these new variables have closer
mechanistic links to LMR responses than physical climate vari-
ables. Improvements in the representation of marine food web
dynamics and the higher trophic levels should further strengthen
mechanistic links and provide a strong foundation for end-to-end
modeling efforts. It should be recognized, however, that ESMs do
include many potentially complex interactions between climate
and ecosystems. The scientific understanding and constraints on
some of these interactions are low (Denman et al., 2007). Model
projections will improve as these interactions become better ob-
served, better understood, and lead to model improvements.

Improved measures of the likelihood and accuracy of LMR pro-
jections are essential for devising appropriate management strate-
gies based on projections (Stow et al., 2009; Planque et al.,
submitted for publication). Ensemble approaches (Section 3.1.2)
are essential in this regard, but there are no widely-accepted ap-
proaches for refining these estimates based on objective metrics
of model skill (Randall et al., 2007). For LMR projections, ensembles
should account for parameter uncertainty and, where necessary,
consider multiple LMR models capable of explaining past observa-
tions and whose model structures are supported on theoretical
grounds. The value of detailed diagnosis of individual projections
for understanding mechanisms, however, must still be recognized
despite the value of ensembles for quantifying uncertainty.

7. Concluding remarks

The importance of understanding the impacts of climate vari-
ability and climate change on LMRs has been widely recognized
by international and national organizations with mandates to
monitor and responsibly manage these valuable resources. IPCC-
class climate models will play a central role in studying these im-
pacts and developing forecasts that can be used to formulate
appropriate long-term management policies. Understanding of
the climate system and its representation within IPCC-class cli-
mate models has progressed to a point where many applications
of IPCC-class climate models to LMR problems are now possible.
Concerted research in the areas outlined in Section 6 over the next
decade has great potential to make forecasts of the impacts of cli-
mate change on LMRs more robust and mechanistic, decrease the
uncertainty in projections, and enable predictions on space and
time scales not presently possible.

The success of efforts to predict climate impacts on LMRs is con-
tingent upon close collaboration between climate and LMR scien-
tists, as well as other experts spanning a range of physical,
biological, chemical and socioeconomic factors that influence LMRs
and the ecosystems in which they reside. Such collaborations must
be populated with scientists who are able to communicate across
disciplines. The present synthesis is intended to facilitate this pro-

cess, but sustained success will require educational programs with
the flexibility and breadth to accommodate the multi-disciplinary
nature of climate change impacts problems. Dedicated funding
mechanisms will also be necessary to develop the underlying
science in relevant research areas, integrate developments, and
translate new science to improved management. These are formi-
dable tasks, but rapid progress in recent years gives cause for great
optimism.
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