

THE OPCE RESEARCH LABORATOR

Model and Data Deficiencies

Space Environment Engineering and Science Applications Workshop

5 – 8 September 2017

Boulder, CO

Stuart Huston

Confluence Analytics, Inc.

Integrity ***** Service ***** Excellence

Atmospheric and Environmental Research Distribution A: Approved for public release; distribution unlimited. OPS-16-12513

- ESA^{*} performed an independent validation of AE9/AP9
 - Compared AP9 with data and other models
 - One conclusion was that AP9 proton fluxes are significantly higher than data and other models, especially for LEO and at low energy (< 10 MeV)
- IRENE team wanted to determine possible reasons and resolutions
- This study focuses on the low energy (< 20 MeV) LEO protons
 - This is a very difficult population to measure
 - We expect RBSP/RPS to provide the "definitive" measurements for > 50 MeV
 - What can we learn about lower energies?

*Heynderickx, D., and P. Truscott, "NARMI Technical Note 2: Validation and Comparison Results," 27 October 2014.

- AP9 predicts much larger fluxes of low energy (< 10 MeV) protons than AP8 at low altitudes
- AP8 MAX is based largely on data from Azur
 - Flew in 1969 1970 (0.3 years near solar maximum): very short time span
 - AP8 only uses 1 month of data (November 1969)
 - 1.5 104 MeV in 7 channels (ΔE/E_{mid} ≈ 0.7)
 - D. Heynderickx/ESA processed & cleaned the data, have provided data to IRENE team
 - Very clean data set, low altitude measurements at 90° pitch angle
- AP9 below 10 MeV is based mainly on CRRES PROTEL
 - Flew in 1990 1991 (1.3 years near solar maximum): short time span
 - 1 − 100 MeV in 24 channels (ΔE/E_{mid} ≈ 0.2)
 - Much data for low L is based on high-altitude pitch angle resolved measurements
- AP9 implicitly uses data from S3-3 (0.1 2 MeV) via templates
 - Vampola published a model based on S3-3; low-altitude fluxes were much higher than AP8

		Orbit Energy (MeV) 0.0 <t< th=""><th>I</th></t<>															I											
	EO	MEO	ß	GEO	1	7	4	و	ø										0		8	20	8	8	8	8	200	000
AP9 v1.35	5	2	<u> </u>	U	0	o	ō	ō	Ö	Η	7	4	9	8	Ä	-	5	ĕ	ŭ	õ	н П	i H	ñ	ĕ	4	Ň	H	5
CRRES/PROTEL																												
ICO/Dosimeter																												
HEO-F3/Dosimeter																												
HEO-F1/Dosimeter																												
TSX5/CEASE																												
Polar/IPS																												
Polar/HISTp																												
TacSat-4/CEASE																												
(S3-3/Telescope)																												
AP9 Future Versions																												
Azur																												
RPSP/RBSPICE																												
RBSP/MagEIS (Io)																												
RBSP/MagEIS (hi)																												
RBSP/REPT																												
RBSP/RPS																												
POES																												
AP8 (Partial list re	lev	ant	to	LEO)																							ļ
Azur																												
Injun 5																												
OV3-3																												
OV3-4																												
P11-AS (AP5 & AP8)																												
Relay 1 (AP5 & AP8)																												

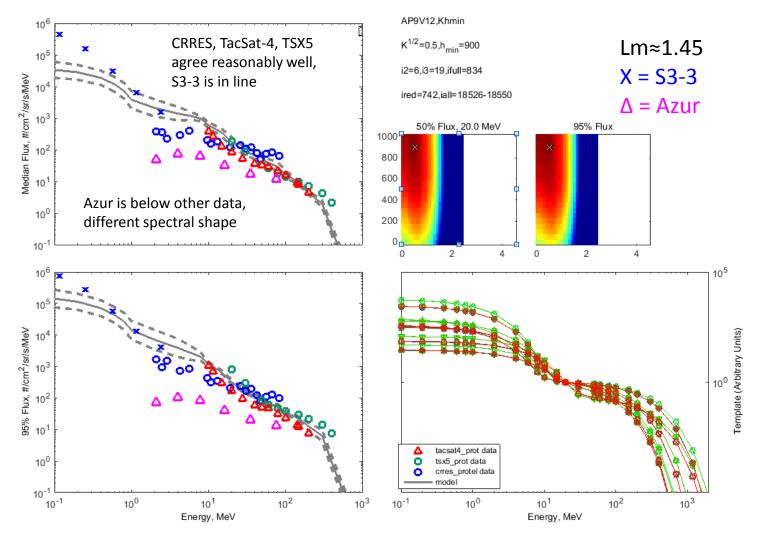
Indicates threshold detector. Spectral inversion required for differential fluxes.

Indicates incomplete spectral or spatial coverage in LEO.

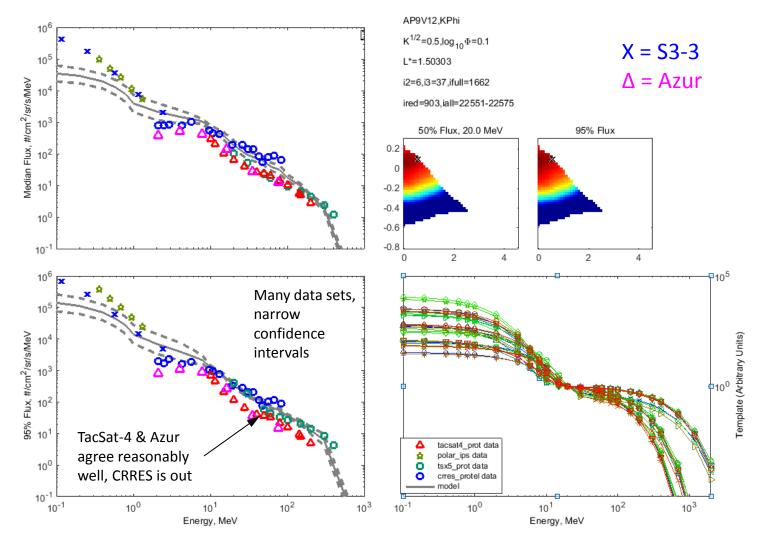
Proton Data Sets - Temporal

		Sunspot Number	1	200 - 150 - 100 - 50 - 0 -				+ •		+								**				•••	- +		, · ·	++	+ • •		- 1					
		1	bit	0	0	I		I	960				0	2				00		I	I	06		I	0					2		1		0
	LEO	MEO	НЕО	GEO	1950				196				1070	Τ'n				1980				1990			2000				0	70.TU				2020
AP9 v1.35																																		
CRRES/PROTEL																																		
ICO/Dosimeter			[1				Τ							Τ	Τ								Т							Τ	Τ		
HEO-F3/Dosimeter	[Γ								Ι															Ι	Γ		
HEO-F1/Dosimeter								Ι							Ι														Ι		Ι	Γ		
TSX5/CEASE		L						1							\downarrow																			
Polar/IPS								1					-		1	1				_					<u> </u>	ļ				_		1		
Polar/HISTp		ļ						4			_		_		4	4	ļ									ļ					_	1	\square	_
TacSat-4/CEASE						_		4			_	_	4	_	4_	4	ļ		_	_			_	_	4	4			_	_	_	1	\square	-
(S3-3/Telescope)																																		L
AP9 Future Version	ons																																	
Azur																																		
RPSP/RBSPICE								Ι							Ι																			
RBSP/MagEIS (Io)																																		
RBSP/MagEIS (hi)								1							1											L						<u> </u>		
RBSP/REPT								1					_		\perp	1										L						1		
RBSP/RPS								_	ļ		_	_	_		4	1				_			 		1	Ļ				_		<u>)</u>		
POES																																		
AP8 (Partial list re	elev	/ant	to	LEC))																													
Azur																																		Γ
Injun 5						Ι	Ι													J	Ι			Ι					Τ	Τ				
OV3-3							Ι							Ι							Ι		Τ	Ι						Ι	Τ			
OV3-4																																		
P11-AS (AP5 & AP8)				ļ				1					_	_	1	1	ļ							_	_	L		_		1	_	1	\square	L
Relay 1 (AP5 & AP8)																																		

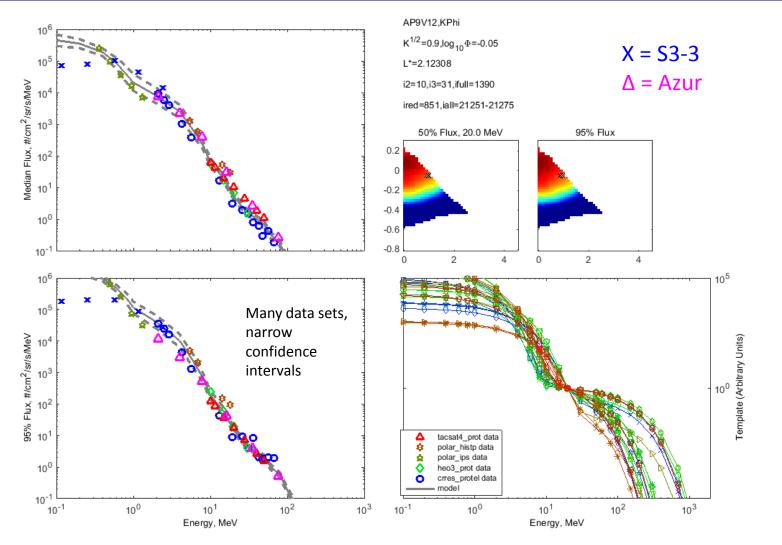
AE9/AP9 Team performed several analyses to investigate reasons for differences, with primary emphasis:


What is the spectral shape of LEO protons between 1 and 30 MeV?

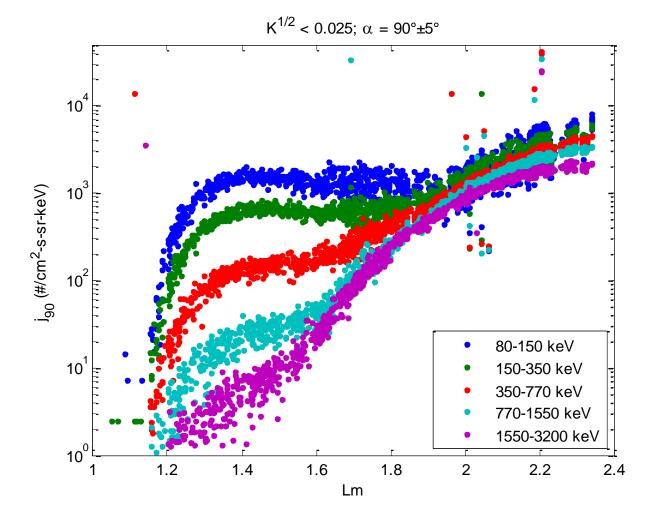
- "Binspectra" plots
 - Plot energy spectra in each AP9 bin for all data sets used
 - Plot model as well
 - We have added additional data sets not currently in AP9 (e.g., Azur, S3-3)
 - These show uncertainty of measurements and model in each bin
- S3-3 analysis
 - Data showed very high fluxes for L < 1.9
 - Although S3-3 data have not been used directly in AP9, they were included in templates
 - Analysis focused on identifying potential contamination
- Review other data sets and analytical models
 - Injun 5, AP8, SIZM, Blanchard & Hess, ...
- TacSat-4 data analysis
 - Attempt to deduce spectral shape from counts in different CEASE channels
 - Intent is to determine whether TacSat-4 data is consistent with a spectral shape like Azur
 - This analysis is not covered in this talk



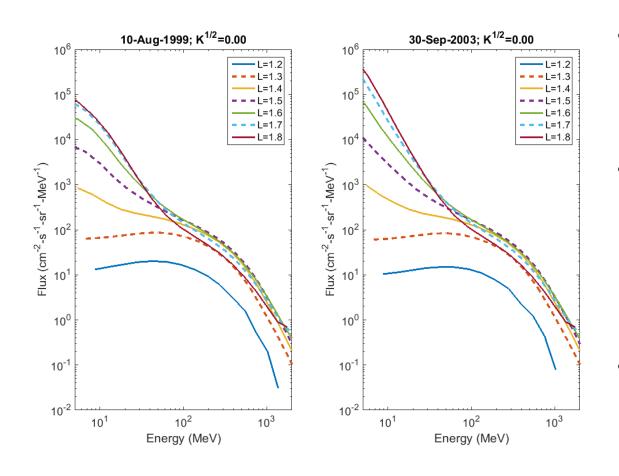
Distribution A: Approved for public release; distribution unlimited. OPS-16-12513

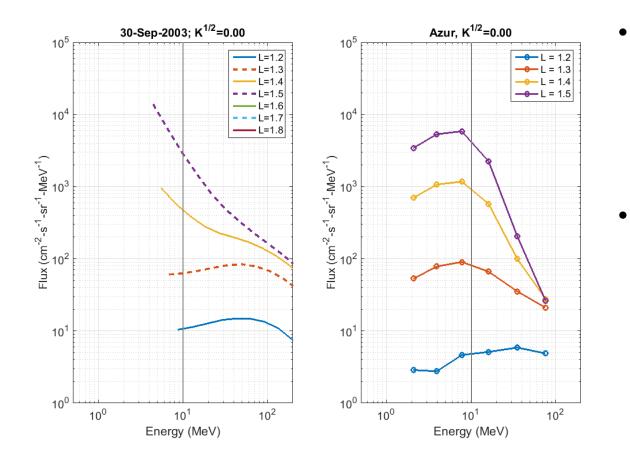


Distribution A: Approved for public release; distribution unlimited. OPS-16-12513


- Flew in 1976 1979 (about 6 years after Azur, rising part of solar cycle)
- 236 x 8048 km x 97.5° orbit
- Proton telescope housed within magnetic electron spectrometer
 - 0.08 3.2 MeV, 5 channels, ΔE/E_{mid} ≈ 0.7
- Data showed very high fluxes for L < 2
- Data formed the basis for a low-energy model by Vampola
- Although S3-3 data have not been used directly in AP9, they were included in templates
 - Templates are used to interpolate/extrapolate data during construction of flux maps
- Analysis focused on identifying potential contamination

S3-3 Variation with L




- Selesnick model shows spectra peaking at 50 – 80 MeV for L < 1.4
- At higher L, spectra below 20 MeV are powerlaw-like, with modulation over solar cycle
- Azur shows spectra peaking at 5 – 10 MeV up to L > 1.5

Selesnick vs. Azur

- Azur and Selesnick model show very different spectral shapes
- Azur has steeper L-gradients than SIZM (this is a known issue in model)

Claflin & White (1974)

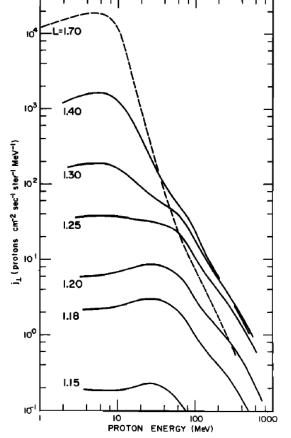


Fig. 8. Computed inner belt proton energy spectra, 2-500 MeV. The dashed line shows the boundary condition at L = 1.7 based on the data of *Hovestadt et al.* [1972] and *Thede* [1969]. The solution used $D_{LL} = 9 \times 10^{-7} L^{11.4} \mu^{-0.7}$ and a free electron density higher than the model density by a factor of 5.

- Solves diffusion equation including Coulomb energy loss, nuclear inelastic scattering, secular decrease of internal field
- Uses solar-cycle averaged
 atmosphere
- Extended to lower energies (~ 2 MeV) for comparison with Azur and OV3-4
- For E < 10 MeV, basically flat for L < 1.25, peaks at 6 - 8 MeV for higher L

Spectral Shapes: Other Data

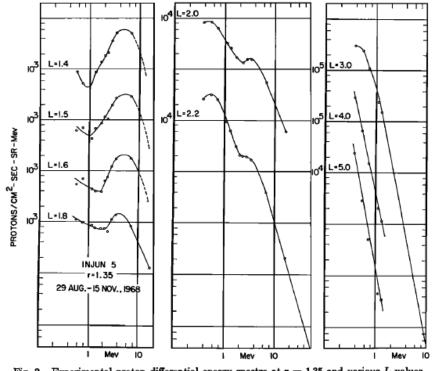


Fig. 2. Experimental proton differential energy spectra at r = 1.35 and various L values.

Injun 5, 1968 (Pizzella and Randall, 1971)

- Data from Injun 5 in 1968 about 1 year prior to Azur
 - This data set was used in AP8
 - Different L values correspond to different K
 - Note minimum in spectrum for E ≈ 2 MeV, peak at E ≈ 6 MeV at low L
- Data from Dial, ESRO 2
 (Fischer et al., 1977) shows
 spectra peaked near 10 20
 MeV

Spectral Shapes: AP8 & Older Data

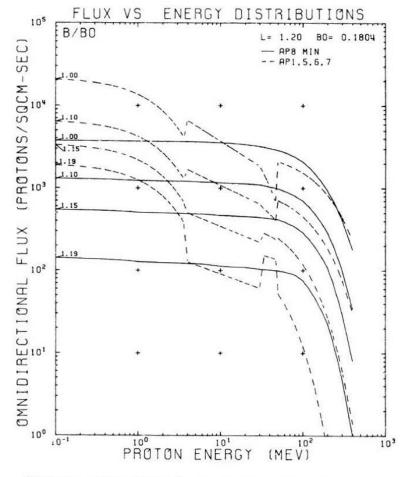


Figure 144. AP8MIN and AP-1, -5, -6, and -7 Flux vs Energy Comparison Plot for L = 1.20 $R_{\rm E}$

- This plot from the AP8 report shows the evolution of model spectra at L = 1.2
- Note that these are integral, omnidirectional fluxes
- Early model AP-5 did have higher fluxes at lower energies
 - AP-5 covered 0.1 4 MeV, assumed an exponential spectral shape (in integral flux)
- Relay 1 (1963) measured 3 MeV fluxes about 9 x Azur (1970) at L ≈ 1.7
- Vette probably modified the shape based on Injun 5 and Azur
- This illustrates the uncertainty and difficulty in developing global models including many data sets and a large energy range

Summary of Results

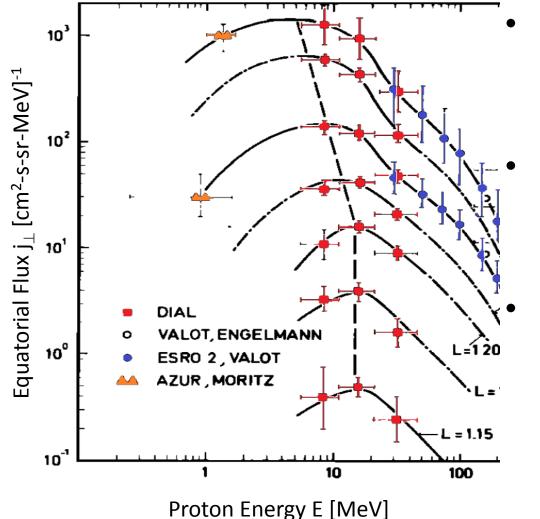
- Binspectra plots
 - There are often large differences among data sets
 - Azur is sometimes the odd one out
 - S3-3 is generally in line with other data sets
 - Agreement among data sets improves above $L \approx 1.5$
- S3-3
 - No reason to doubt large fluxes for L < 1.9
 - May be a transient phenomenon, but fairly stable over 2.8 years of data (1976 1979)
- Other data and models
 - Azur and contemporary data sets (1967 1971, Injun 5, Dial, ESRO 2) show spectra peaked at 5 – 20 MeV
 - Physics-based models indicate a range of spectral shapes, but these are mostly for energies > 10 MeV
 - Models provide little guidance for lower energies—spectrum below 10 MeV could be flat or power law (or something else)
- TacSat-4 Tests
 - TacSat-4/CEASE response appears to be inconsistent with Azur spectral shapes

- For E < 10 MeV, AP9 is largely driven by data from CRRES/PROTEL
 - Much work was performed to remove initial contamination of measurements at E < 10 MeV (including after release of CRRESPRO model)
 - Note that in many cases AP9 fluxes are more like CRRES active data
- Measurements of < 10 MeV protons in inner zone are very difficult, primarily due to contamination from penetrating protons
- The fact that Azur is lower than other data sets indicates that the others could be contaminated (but not beyond a reasonable doubt)
- AP9 data sets from 1990 and later have been cross-calibrated with GOES
 However, cross-calibration is uncertain for E < 10 MeV
- Fluxes vary over multiple dimensions (e.g., E, K, Φ, t; perhaps MLT, ...)
 - Slicing and dicing for comparison (e.g., comparing energy spectra at one K/Φ) can be misleading, especially in regions with large flux gradients, due to uncertainty in coordinates as well as measurements themselves

- We trust the data in AP9, model agrees with data
- We also trust Azur data
- Most likely hypothesis is that Azur (and contemporary measurements) and S3-3 represent two different geophysical states

- Need to explain and model the discrepancies and natural variability
 - Clean measurements of < 20 MeV protons in IZ
 - Extend theory to lower energies
 - Better methods for cross-calibration at lower energies
- Include solar cycle variations
 - Theory (e.g., SIZM, ...)
 - Data (e.g., POES, SAMPEX, ...)

Backup Charts


- Data from Nov. 1969 Mar. 1970 (0.3 years near Solar Max)
- 384 x 3145 km x 102.9° orbit; 1.5 104 MeV
 - − 6 channels, $\Delta E/E_{mid} \approx 0.7$
- Magnetically stabilized, so it always measures j_{perp}
- A fairly large SPE occurred in Nov. 1969, right at launch; several smaller events occurred during the mission

Fischer et al. (1977)

Dial:

- Mar. 1970 May 1970
- 326 x 1629 km x 5.5°

ESRO 2:

- Oct. 1967 May 1971
- 334 x 1085 km x 97.2°
- Azur (Moritz):
- Single channel, 0.25 –
 1.65 MeV
- Separate experiment from Hovestadt

Valot (1972)

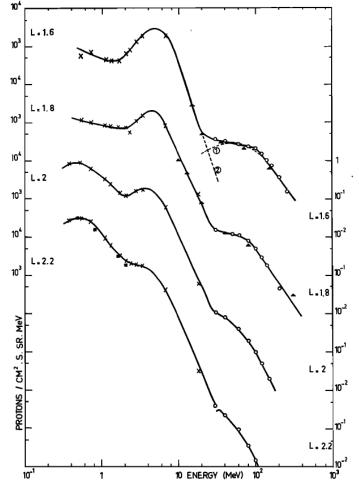


Fig. 8. Spectra between 0.3 and 300 Mev. Remarks and discussion are made in the text. Circles indicate Esro 2 data; crosses, data of *Pizzella and Randall* [1971]; triangles, data of *Naugle and Kniffen* [1963]; and squares, data of *Mihalov and White* [1966].

- Valot: ESRO 2
- Pizzella & Randall: Injun 5
- Naugle & Kniffen: Emulsion stack (Sept. 1960)
- Mihalov & White: KH 7-10 (1964-045A); 149 x 307 km x 95.5°

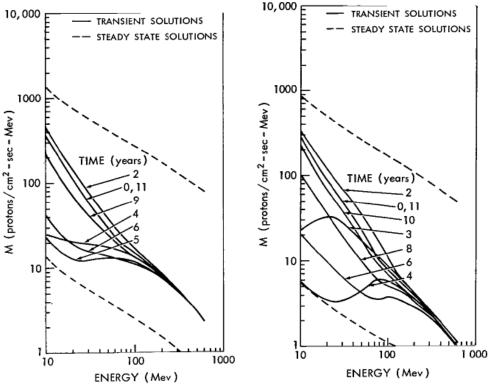
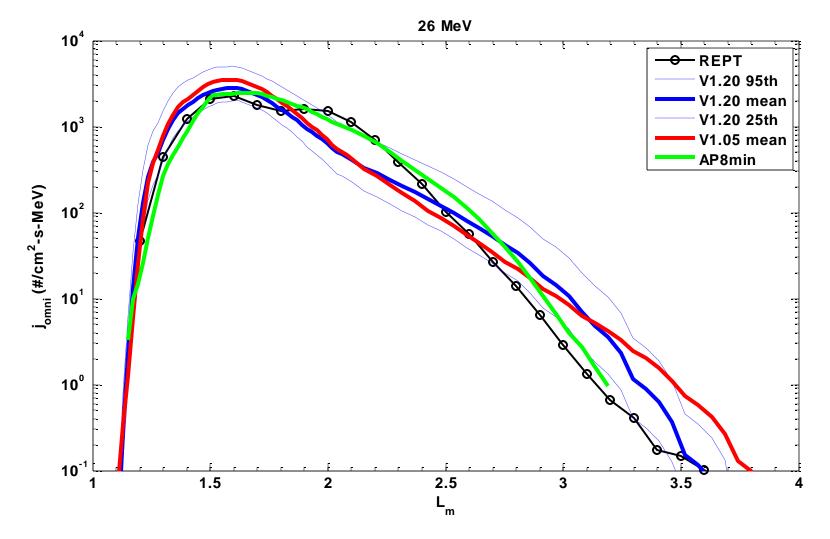
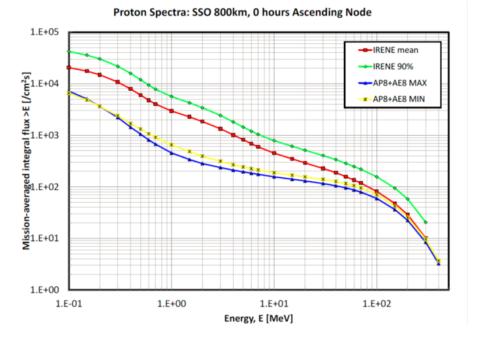


Figure 42--Proton energy spectra at different times in the solar cycle for L = 1.188, B = .1884, $h_{min} = 650$.

Figure 43—Proton energy spectra at different times in the solar cycle for L = 1.188, B = .193, $h_{min} = 580$.


- These figures from Blanchard and Hess show model spectra at low L over the solar cycle
- Here we see some flattening at low energies 3 – 5 years after solar min, powerlaw at other times
- Note that Blanchard & Hess, Selesnick et al., and other models are all for E > 10 MeV
- Claflin & White (1974) predict relatively flat spectra below 10 MeV

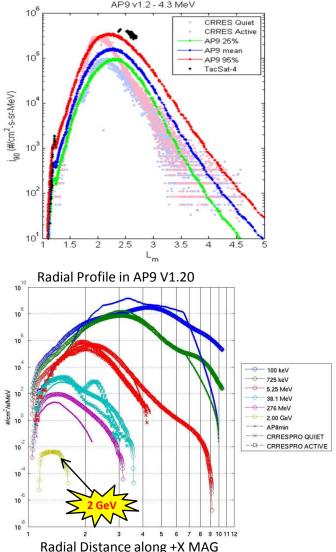
REPT vs. Models – 26 MeV



Summary of ESA Findings (Relevant to LEO Protons)

- AP9 vs. Azur: AP9 mean overestimates except around 10 MeV, spectral shape does not agree with data and other models,also overestimates extent of SAA region
- This plot compares AP9 with AP8 for a polar LEO orbit
- At 1 MeV, AP9 is up to a factor of 10 higher than AP8

Version 1.20 – Database Updates

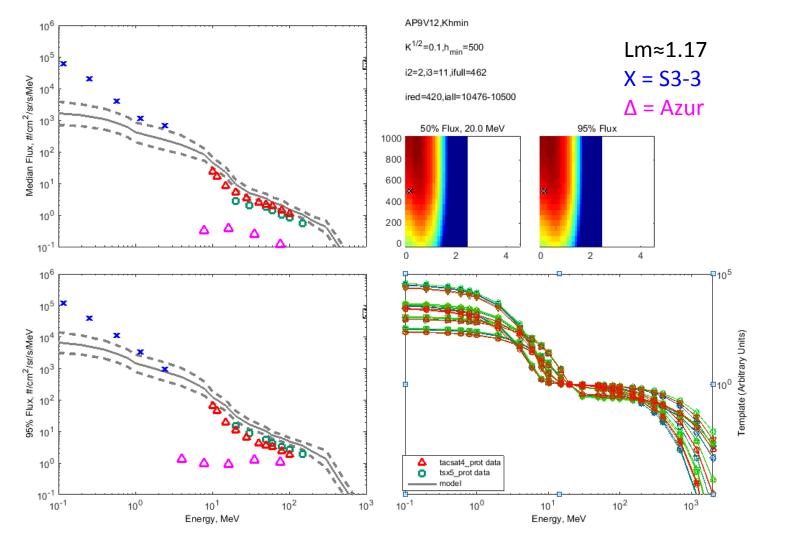

۷Ŏ

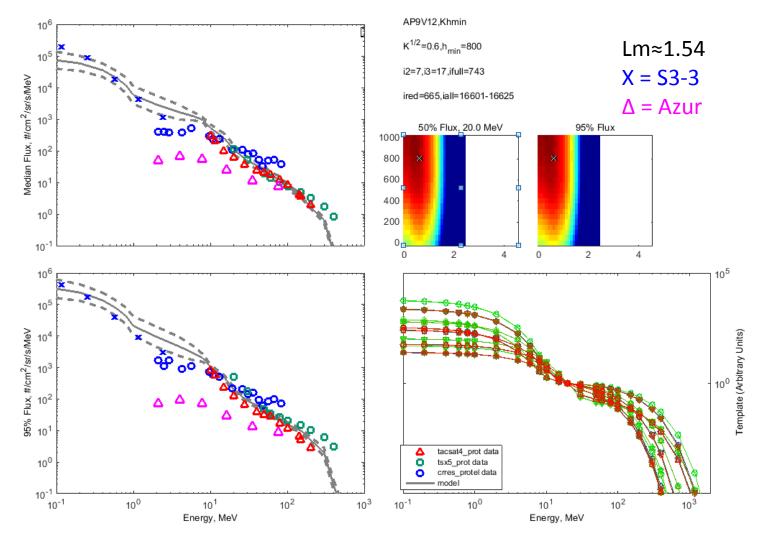
New data set (first new data to be added): ٠

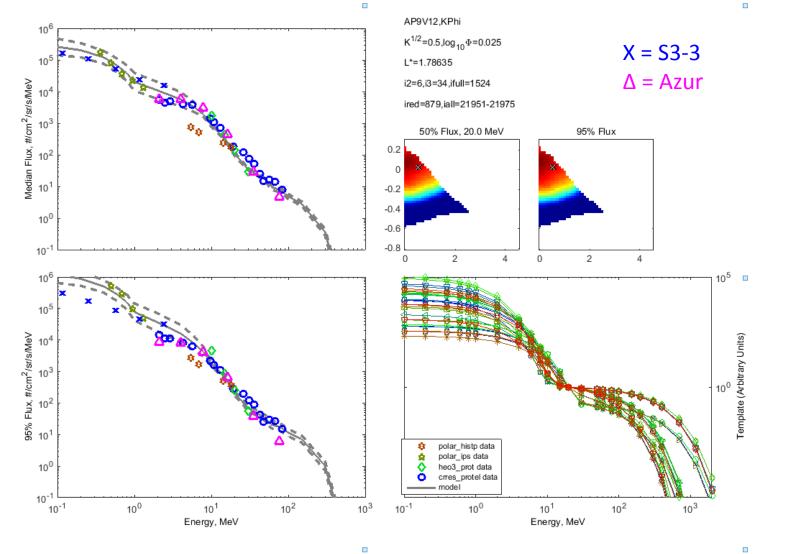
- TacSat-4/CEASE proton data—captures new observations of elevated 1-10 MeV protons
- Additional plasma data: THEMIS/ESA

New proton templates ٠

- Incorporate E/K/ Φ and E/K/h_{min} profiles observed by RBSP/Relativistic Proton Spectrometer
- Extend proton energies to 2 GeV
- Low altitude taper ٠
 - Force fast fall-off of flux for $h_{min} < 100$ km
 - Cleans up radial scalloping at altitudes below ~1000 km
- Low altitude fluxes are reduced, but differences remain

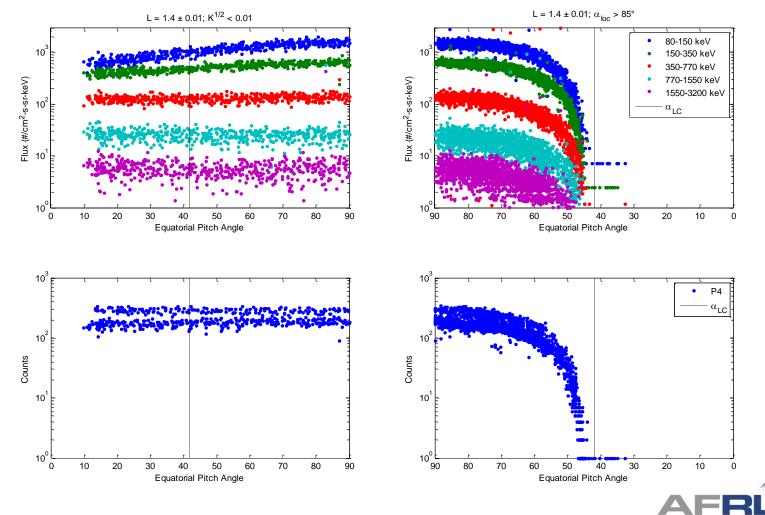






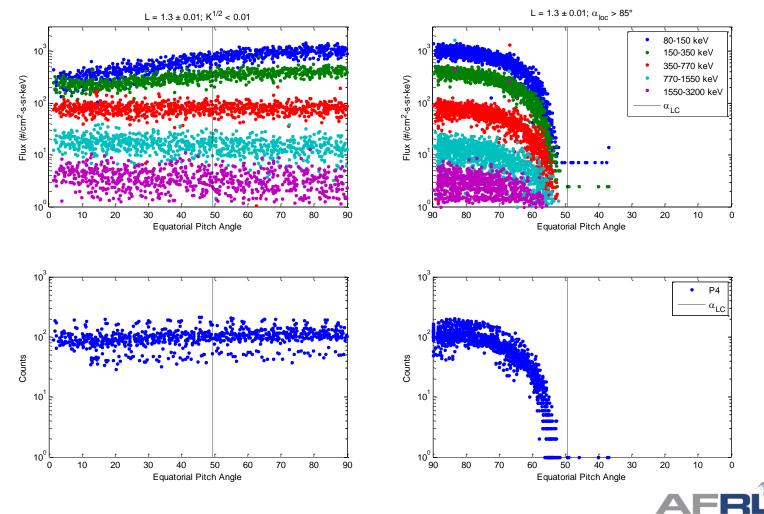
Distribution A: Approved for public release; distribution unlimited. OPS-16-12513

Binspectra Plots

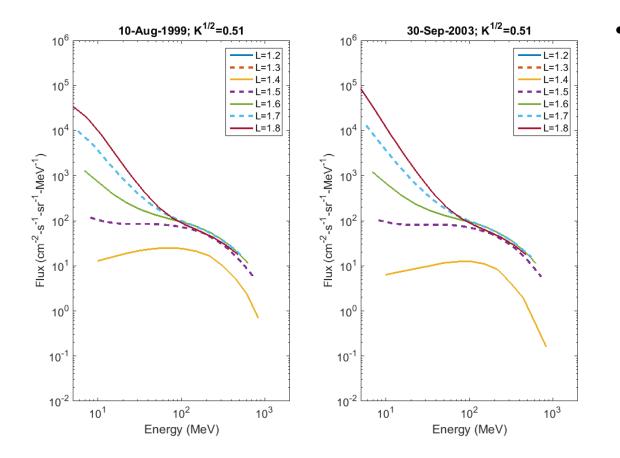


Distribution A: Approved for public release; distribution unlimited. OPS-16-12513

Measured near the equator, pitch angle determined by the pitch angle of the detector axis


Using j_{perp} measurements, equatorial pitch angle determined using B/B_{min}

Distribution A: Approved for public release; distribution unlimited. OPS-16-12513


Measured near the equator, pitch angle determined by the pitch angle of the detector axis Using j_{perp} measurements, equatorial pitch angle determined using B/B_{min}

Distribution A: Approved for public release; distribution unlimited. OPS-16-12513

 Same as previous slide, but off the equator

- RBSP < 20 MeV protons (MagEIS and RBSPICE) do not have a requirement for measurements in inner zone
- REPT (20 100 MeV) measurements in inner zone require significant data processing to remove contamination from penetrating protons
- RPS measurements in inner zone are clean

