

Solar particle analyses: needs, data and analysis tools

<u>Piers Jiggens</u>*, Athina Varotsou, Pete Truscott, Daniel Heynderickx, Fan Lei, I. Sandberg, S. Giamini, Hugh Evans, Eamonn Daly

07/09/2017

*piers.jiggens@esa.int European Space Agency (ESA) Space Environment and Effects Section

ESA UNCLASSIFIED - For Official Use

European Space Agency

The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model

- The SAPPHIRE SEP model is intended to provide outputs applicable for:
 - > TID, TNID effects (including solar arrays and thin coatings)
 - SEEs: Upsets, Latch-up and Burnout
 - Sensor interference
 - Effects on astronauts
- To achieve this we have models for:
 - Severe environments (either peak flux or worst week equivalent)
 - Cumulative mission fluence environments
 - > Extrapolations to low (0.1 MeV/nuc) and high (1 GeV/nuc) energies
- All models are probabilistic in nature with a basis of protons and helium and extensions to Heavy Ions (HIs)

ESA UNCLASSIFIED - For Official Use

*

The SAPPHIRE Model Outputs - Overview

SEP species [protons (H); alphas (He)]								
		Particle Energies	Ch.	Lower	gy (Mev/r Upper	Mean		
			1	5.00	7.23	6.01		
Solar Maximum		Core Model: 5-300 MeV (11 logarithmically-spaced channels)	2	7.23	10.46	8.70		Solar Minimum
			3	10.46	15.12	12.58		25 outputs
21 outputs			4	15.12	21.87	18.18		
Prediction periods (0.5 – 35 years)		Extrapolation/Interpolation:	5	21.87	31.62	26.30		Prediction periods
		0.1 MeV – 1 GeV (81 Energies) Confidence Levels	6	31.62	45.73	38.02		(0.5 – 55 years)
			7	45.73	66.13	54.99		
[5 cycles with 7			8	66.13	95.64	79.53		[5 TUIL CYCLES FOR
active years per		F2 subsubs	9	95.64	138.3	115.0		Statistically
cycle]		53 outputs from 0.5 - 99.9%	10	138.3	200.0	166.3		implementation
		Hom 0.5 55.5 %	11	200.0	289.2	240.5		implementation
Model Outputs Cumulative Mission Fluence; Worst case SPE Fluence: SEP Peak Flux								
ESA UNCLASSIFIED - For Official L	lse	WUISt-Case SPE Flu	ence,	SLF Fed	IK FIUX			

*

Model Data and Processing

- Newly processed data including solar protons and solar helium (1974-2015)
- GOES(SMS)/SEM/EPS/MEPAD data corrected in energy using IMP8/GME
- Difference of processed data w.r.t. (geo.) mean of bin upper/lower energies

Underlying Data, resulting from major clean-up, is available at: http://test.sepem.eu/help/SEPEM_RDS_v2-01.zip

ESA UNCLASSIFIED - For Official Use

= II 🛏 == ++ II == 🚝 == II II = = = 🖽 🛶 🔯 II == == 👯 🛶 IV

Model for Solar Energetic Helium

- esa
- Exponential cut-off power law probability distribution fit to SPEs at 11 energies
- Outputs of cumulative fluence/peak flux/worst-case SPE fluence vs confidence
- Extrapolations based on Band Fit and 4 benchmark cases

1-in-x-year Solar Particle Events

$$\Pr_D(N=0) = \Pr(N=0)^{\frac{D}{x} \times \frac{11}{7}} = 0.3679^{\frac{D}{x} \times \frac{11}{7}} = 1 - p$$

ESA UNCLASSIFIED - For Official Use

SPE

Freq.

10

20

50

100

300

1000

10000

model

Period (D)

3

3

6

18

26

32

Prediction

Prob. (p)

0.2700

0.2100

0.0900

0.0900

0.0900

0.0400

0.0050

+

Rare SPEs and Comparisons with CREME96/ESP

- Method to transform results from confidence-duration into SPEs that occur once in every x years
- Protons (solid lines) and alphas (dashed)

- SAPPHIRE, CREME96 and ESP-PSYCHIC show different spectral shapes
- CREME96 Worst week more severe than Worst 5 minutes

*

ESA UNCLASSIFIED - For Official Use

European Space Agency

Heavy Ion Abundances

European Space Agency

+

Single Event Effects Quantities (LET Spectra)

 Abundances to helium outputs allows derivation of flux/fluence spectra as a function of particle Linear Energy Transfer (LET)

1013

 10^{12} 10^{11}

10¹⁰ 10⁹

Proton comparisons at high energy

esa

Proton comparisons to data at low energy

- ACE/EPAM data vs SAPPHIRE confidence 50%, 60%, 70,%, 80%, 90%, 95%, 99%
- Could be important for solar cell applications.

Yearly 35 MeV p+ Fluence from Cumulative Model

ESA UNCLASSIFIED - For Official Use

*

esa

Solar Max – Solar Min combined Implementation

ESA UNCLASSIFIED - For Official Use

*

Next Generation of SEP Models

Motivation

- Combine SEP outputs with RB outputs
- Produce flux time series not just cumulative fluence or SPE fluence or peak flux
- Approaches
 - Use a virtual timelines method but assign each event a flux profile
 - Requires seeding and modification of events from our RDS
- End Game
 - Transform both time series into an effect and sum
 - Find some parameter to drive both models (perhaps a dream?)
- Work by IASA & SPARC in Greece (I. Sandberg, Sigiava Giamini et al.)

ESA UNCLASSIFIED - For Official Use

The Statistical Basis

- Find a parameter related to flux to make a regression with duration (done)
- Sample waiting time
- Randomly sample duration or flux-type parameter
 - Find corresponding second parameter
 - Select random close by event to use as a seed
 - Build virtual event
- Repeat a gazillion times (>100,000 years)

ESA UNCLASSIFIED - For Official Use

European Space Agency

Example modified SPE

ESA UNCLASSIFIED - For Official Use

*

System Logical Approach

ESA UNCLASSIFIED - For Official Use

Some Preliminary Comparisons

Good agreement at low energy (especially with SAPPHIRE)

 Some apparent underestimation of peak fluxes and higher energy fluences

ESA UNCLASSIFIED - For Official Use

= 88 ba 22 = 4+ 88 = ½ = 2 88 88 = 2 22 22 24 au 00 88 = 2 22 24 14 X im 1+1

Some Preliminary Comparisons

Good agreement at low energy (especially with SAPPHIRE)

 Some apparent underestimation of peak fluxes and higher energy fluences

SEP Forecasting (for ESA SSA application)

Soft X-ray Flares (All)

- New Activity to develop SEP Advanced Warning System
- Evolution of FORSPEF, see:
 - Anastasiadis et al., Solar Phy. 2017
 - Papaioannou et al., Jour. SWSC, 2016)
- More system based, leveraging the RDS, a load more data. **Today's SPE!**

Concluding Remarks

- SAPPHIRE model development is complete
 - Updated solar proton model (JSWSC, submitted)
 - New solar helium model (IEEE, Jan 2018)
 - New abundance ratios for solar heavy ions
- Outputs/implementation instructions on request
 - On SPENVIS in 2017 & OMERE in 2018
- Underlying Data (RDS) is already available at: <u>http://test.sepem.eu/help/SEPEM_RDS_v2-01.zip</u>
- And now viewable at:

https://spitfire.estec.esa.int/ODI/dplot_sepem.html

Next-gen and forecasting on the horizon

Thank you for your attention!

ESA UNCLASSIFIED - For Official Use

European Space Agency

Back-Up Slides

ESA UNCLASSIFIED - For Official Use

European Space Agency

Comparison of RDSv2.1 to PSYCHIC IDS

ESA UNCLASSIFIED - For Official Use

_ II 🛌 :: 🖛 🕂 II 🗮 🔚 _ II II _ _ _ Z :: H 🛶 🚳 II _ _ := II 💥 🖕 📦

Example Probability Distribution Fit

ESA UNCLASSIFIED - For Official Use

· _ II 🕨 :: 🖷 + II 💻 들 🚍 II II 二 二 :: 🖬 🛶 💵 II 二 :: II 🗰 💥

+

Example Energy Extrapolation

ESA UNCLASSIFIED - For Official Use

Abundances for 7 elements

ESA UNCLASSIFIED - For Official Use

__ 88 b= \$\$ == += 88 == ½ __ 88 88 __ 88 == @ 88 __ 88 18 __ \$\$ im |+|

Cumulative Fluence as a function of LET

ESA UNCLASSIFIED - For Official Use

Solar Array Degradation

ESA UNCLASSIFIED - For Official Use

= II 🛏 :: 🖛 + II 💻 🔚 = II II II = = : :: II 🖬 🖬 II = :: :: II 💥 🛏 🕪