National Aeronautics and Space Administration

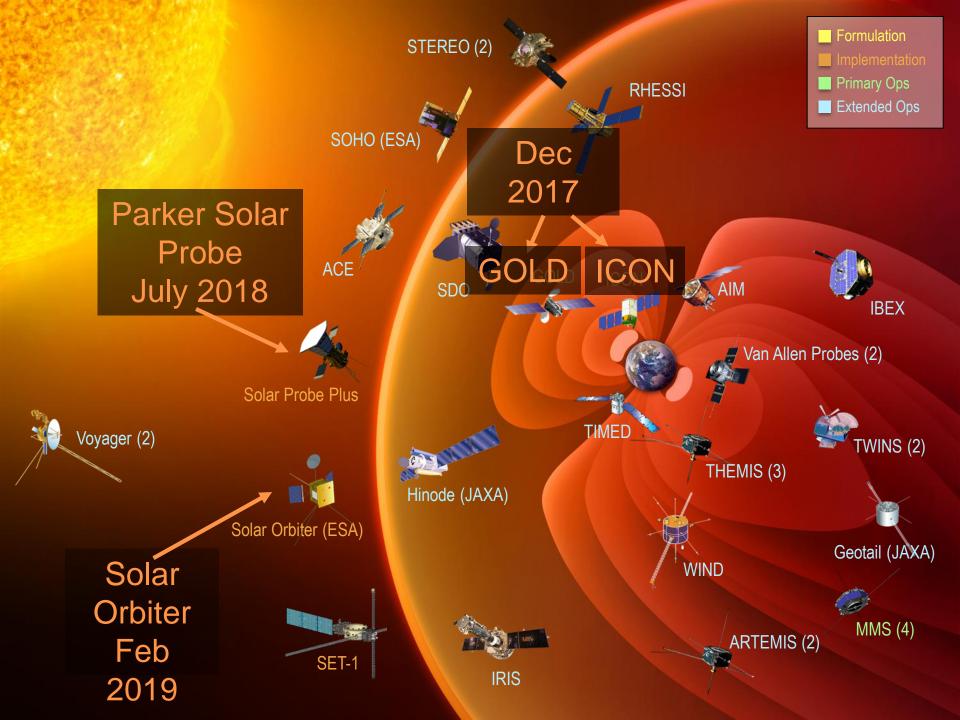
NASA LWS Program and Research to Operations

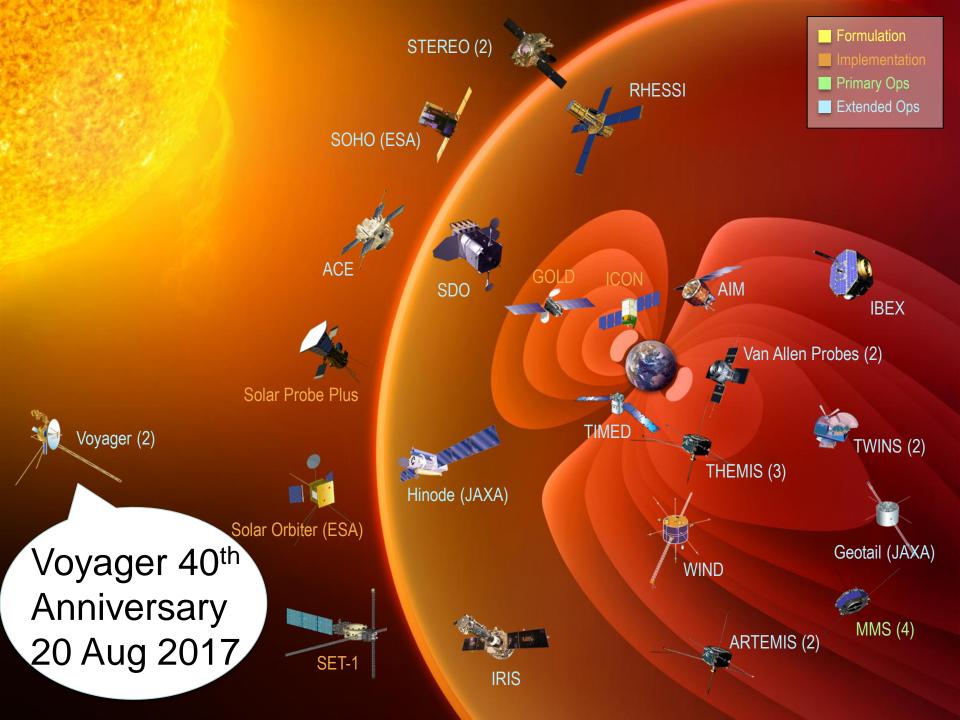
Janet Kozyra (LWS Science Lead) Jeff Morrill (LWS Program Scientist) Elsayed Talaat (Chief Scientist) Heliophysics Division, NASA HQ

5-8 September 2017

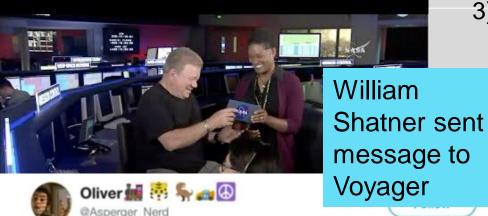
SEESAW Workshop

Steve Clarke on detail to OSTP as of end of July


New faces: Janet Kozyra (recently joined NASA from NSF) Jared Leisner (joined from NASA Planetary Science Div)


Seeking a Heliophysics Division Director – IPA Position

 NASA is looking for an experienced science leader to serve as Heliophysics Division Director under an Intergovernmental Personnel Act (IPA) appointment. You can find more information on this open position here:

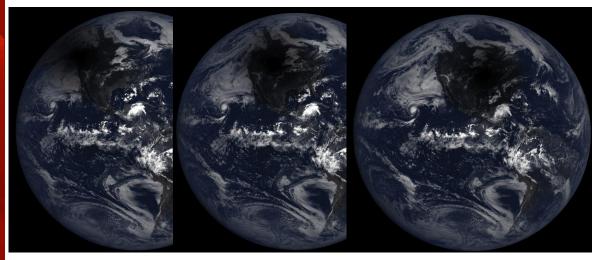

https://science.nasa.gov/about-us/job-opportunities.

• Response on or before <u>October 13, 2017</u>

40th Anniversary of Voyager Smithsonian Air & Space Museum, Sept 5

We offer friendship across the stars. You are not alone. #MessageToVoyager

12:30 PM - 4 Aug 2017


What design strategies enabled Voyager to survive? Three elements:

- Learned from Pioneer about the severity of the space environment -> Added shielding & redesigned somecomponents
- 2) Simpler design, 63kB memory, 1/240,000th of the computing power in your smartphone
- 3) Redundancy and automation:
 - "Two-string" redundancy for its critical systems
 - Voyager could sense the state that it was in, and turn something off if there was a problem.
 - Also one of 1st probes to have "back up" mission installed. Carried on even without ground commands.

--Suzanne Dodd, project manager, Vovager

Solar Eclipse 21 August 2017

Photo Credit: (NASA/Aubrey Gemignani)

Moon's shadow moving across North America as seen by EPIC on DISCOVR.

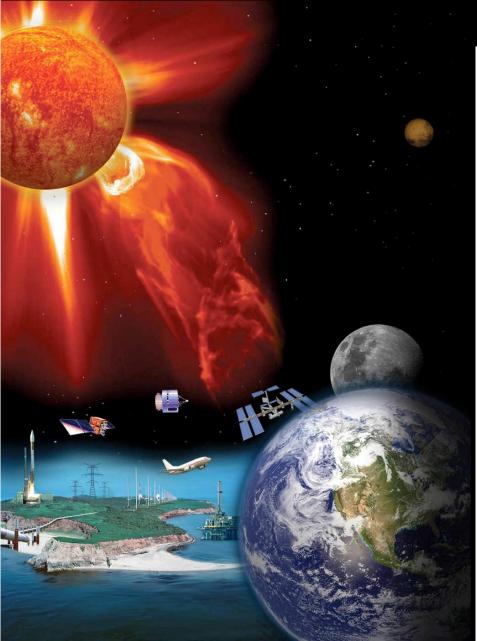
Credit: NASA EPIC Team

2017/08/21 20:24

Credits Innermost image: NASA/SDO. <u>Ground-based</u> eclipse image: Jay Pasachoff, Ron Dantowitz, Christian Lockwood and the Williams College Eclipse Expedition/NSF/National Geographic <u>Outer image</u>:

HPD ROSES16 Status

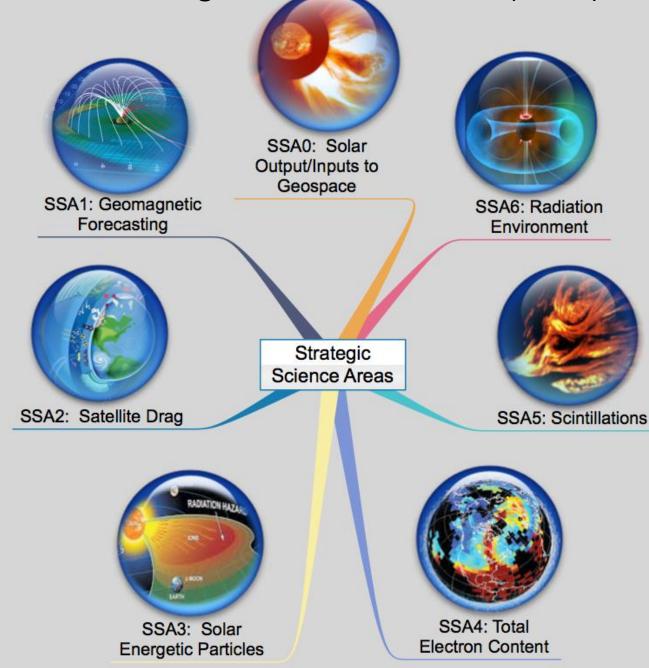
ELEMENT	STEP 1 PROPOSALS (Due Date)	STEP 2 PROPOSALS (Due Date)	AWARDS (Expected)	YEAR 1 (\$M)	~% Success Rate
B.2 H-SR	235	212	31	\$6.3M	15
B.3 H-TIDeS	87	71	13	\$5.3M	18
B.4 H-GI Open	197	181	33	\$3.0M	18
B.5 H-GCR TMS	44	40	10	\$4.4M	25
B.6 H-LWS	74	63	20	(\$3.75M)	32
B.7 H-DEE	28	24	7	0.5M	29
B.8 H-GI MMS	57	40	(8-10)	(1.3M)	(20-25)
B.9 H-GCR SC	PPD ROSES17	PPD ROSES17	-	-	
B.10 H-USPI	7	5	(2)	(\$0.4M)	(40)
E.5 ISE	41	39	11	\$0.95M	28


Success rate = # proposals funded / # STEP 2 proposals received

DRIVE implemented in FY18 President's Budget

\$M		FY16	FY17	FY18	FY19	FY20	FY21	FY22	Delta FY18	FY20- FY18
Sounding Rocket Program Office	FY15 PBR	48.3	53.0	53.0	53.0				10.7	4.1
	FY18 PBR	49.8	53.3	59.0	61.1	63.1	63.1	63.1	10.7	4.1
Guest	FY15 PBR	8.0	8.0	8.0	8.0				7.2	4.8
Investigator	FY18 PBR	10.5	11.6	15.2	20.0	20.0	20.0	20.0		
Research & Analysis (HSR, H- TIDeS, H- GCR)	FY15 PBR	34.0	33.9	33.9	33.9				16.0	
	FY18 PBR	36.3	39.4	49.9	58.2	58.6	58.6	58.6		8.7
LWS Science	FY15 PBR	17.5	17.5	17.5	17.5				7.1	6.3
	FY18 PBR	18.4	21.9	29.0	35.5	35.3	35.3	35.3		
									+\$41M	+\$24M

Living With A Star (LWS)

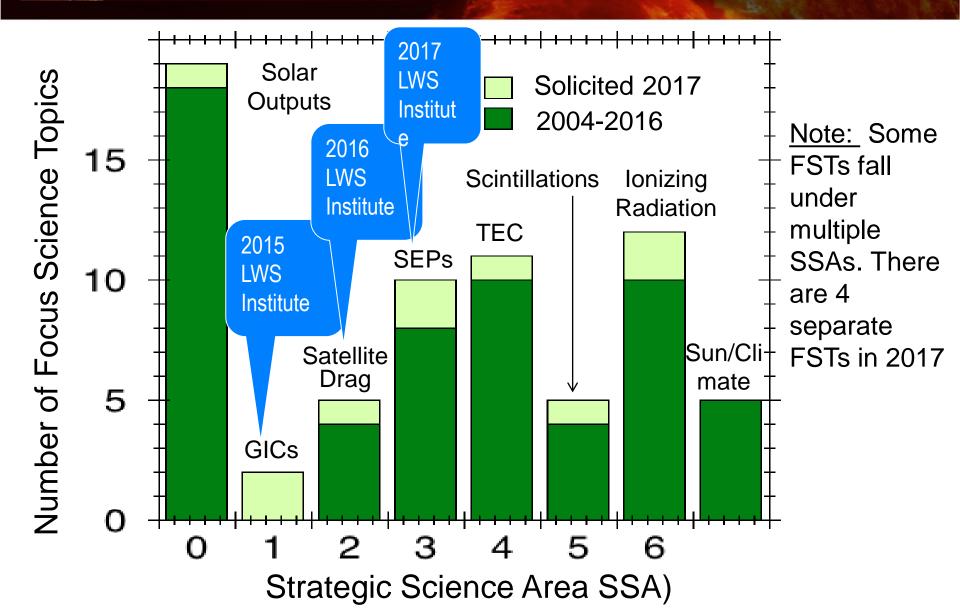

Objectives are to understand (and model):

- The variable sources of mass and energy from our Star
- The associated reactions of heliospheric and geospace regions and
- The implications for life and habitability at the Earth and beyond.

Elements:

- strategic missions
- targeted research
- technology development
- space environment testbed flight opportunity
- partnerships with other agencies/nations.

LWS Strategic Science Areas (SSA)


Largely line up with SWAP Benchmark topics. Synergisms expected in results:


- 1. Induced geoelectric fields
- 2. Ionizing radiation
- Ionospheric disturbances
- 4. Solar radio bursts
- 5. Upper atmospheric expansion

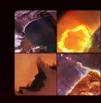
SWAP Benchmark Steps:

- Phase 1 benchmarks – close to completed
- 2. Assessment report of gaps submitted
- Process for Phase
 2 benchmarks –
 under discussion

LWS Focus Science Topics Related to Each Strategic Science Area (2004 - upcoming 2017)

Living With a Star Institutes

A typical award may include:


- Two 5-day meetings for up to 15 team members including: travel, catering, meeting room and audiovisual costs (Please note that UCAR cannot support travel for federal employees).
- A ½ day team meeting at either AGU or AMS including meeting room rental and audiovisual.
- Teleconferencing using Go-to-Meeting or Ready Talk
- Publication costs

2015: Principles in relation to the effects of geomagnetically induced currents (GICs) during CME-driven geomagnetic disturbances (GMDs)

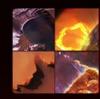
2016: Now-casts of atmospheric drag for LEO spacecraft

2017: Now-casts of radiation storms (proton events) at energy levels that could create a radiation hazard for aircrew and passengers

2017/18: Two new institutes will be solicited

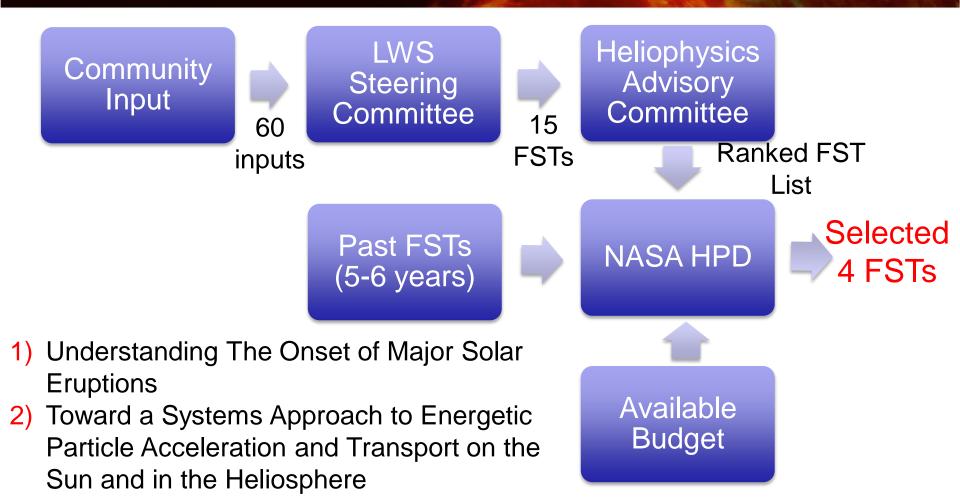
ROSES – H-LWS 2016

- ROSES 2016 LWS FSTs developed incorporating inputs from previous Steering Committee reports and *informed* by SWAP science priorities.
- Proposals were due November 2016.
- A total of 63 Step-2 proposals were received by NSPIRES.
- Three FST Teams (20 proposals) were selected.
- Kickoff Workshop planned
 - —All new FST teams will meet and develop comprehensive work plans for team member activities.
 - —Goal is to have teams produce a clear set of targets and plan of action at the outset of the FST.


Advances Toward a Near Real Time Description of the Solar Atmosphere and Inner Heliosphere

PI/ Institution	Investigation Title
DeForest /SWRI	FRAN: Fluxon Rapid Assimilative Nowcasting
Schuck	Developing Vector Magnetic Maps from SDO/HMI that can Drive
/GSFC	Space Weather Models
Leake /GSFC	Implementing and Evaluating a Vector-Magnetogram-Driven Magnetohydrodynamic Model of the Magnetic Field in the Low Solar Atmosphere
Sokolov	Matching EUV observations to a flare model with self-consistent
/U Mich.	energy release
Gibson	Plasmoid Instabilities and Supra-Arcade Downflows: Validating
/UCAR	Theory and Simulation with Observations
Warren	Data-driven Simulations of Active Region Evolution and CME
/NRL	Initiation-SOLR
Jackson	Dynamics of solar flares: synthesis of NASA space data with
/UCSD	microwave imaging spectroscopy from EOVSA
Gopalswamy /GSFC	The Global State of the Solar Atmosphere and Inner Heliosphere during Cycles 23 and 24

Characterization of the Earth's Radiation Environment


PI/ Institution	Investigation Title
Denton /SSI	Characterizing the Earth's Radiation Environment: A Flux Model of the Inner Magnetosphere
Tenishev /UMich	Effect of solar variability on the geospace radiation environment
Tobiska /SET	RADiation environment using ARMAS data in the NAIRAS model (RADIAN)
Ukhorskiy /JHU APL	Data-constrained predictive model of radiation belt dynamics
Glocer /GSFC	Predicting radiation variability in Earth's magnetosphere
Elkington /LASP, CU	Effects of advective and diffuse transport of trapped energetic particles in radiation belt models

Studies of the Global Electrodynamics of Ionospheric Disturbances

PI/ Institution	Investigation Title
Verkhoglyad ova/ JPL	Understanding the Impacts of Dynamic Drivers on Global Storm-time Ionosphere-Thermosphere (IT) System
Lu /UCAR	Global Ionospheric Electrodynamics and Its Influence on the Thermosphere
Fang /UCO	Quantifying the variability of equatorial electrodynamics during disturbed geomagnetic conditions using first-principle models
Raeder /UNH	Storm Enhanced Density, Tongues of Ionization, and Sub Auroral Polarization Streams
Sazykin /UT Dallas	Ionospheric Storm-Time Electrodynamics: Coupling Across Latitudes and Magnetospheric Imprint
CROWLEY /ASTRA	Ionospheric Electrodynamics – A Quantitative Characterization

FST Development and Selection Process (ROSES 2017)

- 3) Ion Circulation and Effects on the Magnetosphere and MI-Coupling
- 4) Understanding Physical Processes in the Magnetosphere & Ionosphere Thermosphere / Mesosphere System During Extreme Events

2017 ROSES – LWS TR Solicitation

- ROSES 2017 LWS Step-1 and Step-2 submissions delayed until after the ROSES 2016 selections.
 - Delay in part due to delay in announcement of NASA budget.
- Revised ROSES 2017 LWS Amendment to be announced shortly. Four chosen FST topics not altered. Changes:
 - -Location of the "Relevance Discussion" & it's evaluation
 - -Clarification of the data usage for LWS FST studies.
- <u>Target dates</u>
 - -Step-1 late September/early October
 - Step-2 late November/early December
- Should still be able to access any previous STEP-1 work done on the NSPIRES web site.

LWS Science looking forward

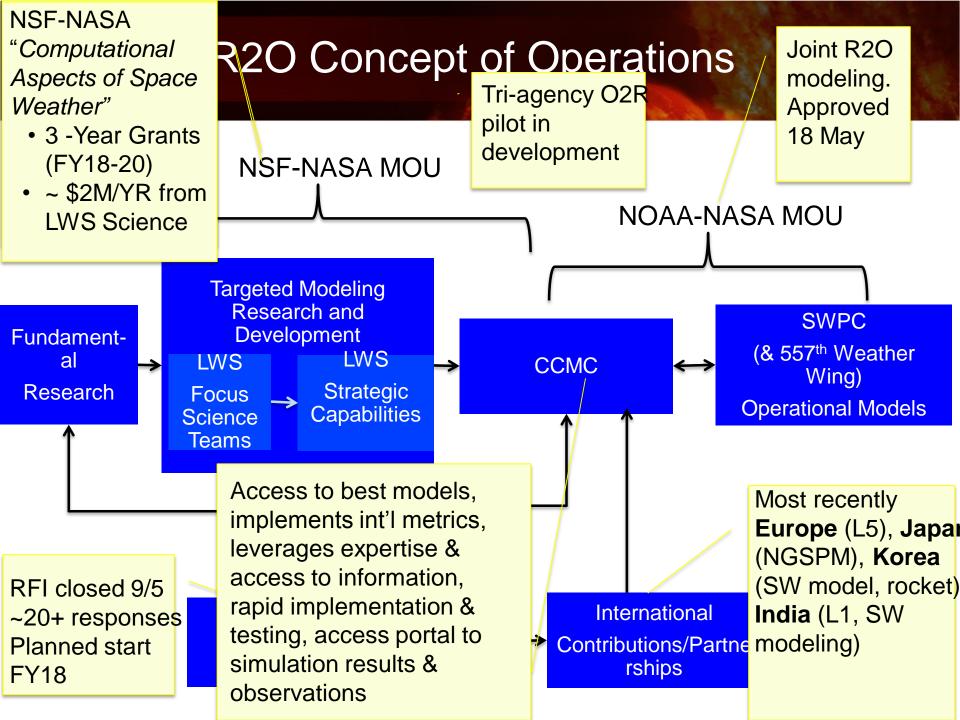
LWS Steering Committee reconstituted as the LWS Analysis Group (LPAG).

- Interdisciplinary forum for soliciting & coordinating community input in support of LWS objectives
- Two LPAG Co-Chairs and an LPAG Executive Committee (EC) organize meetings, collect & summarize community input, prepare reports to HPD Director
- The full LPAG consists of all members of the community who participate in the open meetings.
- NSF, NOAA ex officio members; adding DOD
- DCL soliciting candidates for the LPAG will be out shortly

Core LWS Science activities continue:

ROSES – 2017, ... LWS FST calls

ROSES – 201X LWS Strategic Capabilities (with NSF)


Partnerships:

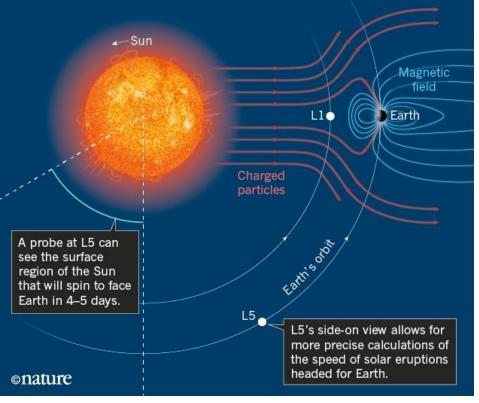
Joint NSF-NASA – Computational Aspects of Space Weather

Space weather focused aspects of Heliophysics Science Centers

Seeking to enable Space Weather-oriented opportunities:

R2O & O2R tools, SBIR's, Space Weather-oriented tech development

Thank you.



LWS International Collaborations

L5 Mission - Europe

PARKING SPACE-WEATHER PROBES

The European Space Agency hopes to place its new probe at the gravitationally stable Lagrange point 5 (L5), where it will have a different view of the Sun compared with probes at the more populated spot, L1.

Next Generation Solar Physics Mission (NGSPM)

 Agreement among NASA, JAXA and ESA for the study of a possible multilateral solar physics mission concept.

Aditya - L1 First Indian mission to study the Sun

- launch during 2019 2020 timeframe
- 6 experiments
 - observations of Sun's Photosphere (soft and hard X-ray), Chromosphere (UV) and corona (Visible and NIR). In addition, particle payloads will study the particle flux emanating from the Sun and reaching the L1 orbit, and the magnetometer payload will measure the variation in magnetic field strength at the halo orbit around

NASA-NSF Partnership for Collaborative Space Weather Modeling

Solar Interior

- Magnetohydrodynamics (MHD)
- Emerging magnetic flux
- Subsurface flow maps
- Far-side imaging (helioseismology)
- Magnetic flux transport

Photosphere & Chromosphere

- Magnetic field
- Solar energetic particles (SEPs)
- Flares/coronal mass ejections (CMEs)
- Coronal holes/solar wind
- Radio bursts
- X-ray/extreme ultraviolet emissions

Heliosphere

- Interplanetary magnetic field (IMF)
- Solar wind
- Shocks/SEPs
- CMEs

Magnetosphere

- IMF

- Magnetic storms/ substorms
- Auroral zones/ring currents
- Polar cap potential
- Radiation belts
- South Atlantic Anomaly

Thermosphere & Ionosphere

- Plasma bubbles/ equatorial anomalies
- equatorial anomalies
- Scintillation/density fluctuation
- Neutral winds
- Traveling ionospheric disturbances
- Ultraviolet heating
- Ion chemistry
- Bulk ionosphere

A First-Principles-The Coronal Global A Modular Corona-Solar Wind Medium Range Integrated Global-Integrated Integration of **Based Data Evolutionary Model** Sun Model of **Capability** for **Real-Time Energetic Particle** Extended MHD Thermosphere Assimilation **Magnetic Flux** (CGEM) **Community Model-**Modeling System Acceleration and Kinetic Effects **Ionosphere Storm** System for the ing of Flares, CMEs (C-SWEPA) **Emergence** and for Heliospheric in Global Magneto-Forecasts **Global Ionosphere**and Their Interplan-**Space Weather** Modules sphere Models Transport Thermosphereetary Impacts Forecasting Nathan Amitava Electrodynamics **George Fisher Spiro Antiochos Dusan Odstrcil** Schwandron Bhattacharjee Anthony Mannucci Nagi N. Mansour **Robert Schunk** University of NASA Goddard NASA Goddard University of Jet Propulsion NASA Ames Princeton Utah State California Berkeley Space Flight Center Space Flight Center New Hampshire **Research Center** University Laboratory University

SOHO (E

ACE

SET-1

IRIS

Solar Probe Plus

Voyager (2)

On May 31, the Solar Probe Plus was renamed the Parker Solar Probe in honor of the discovery of the solar wind by Eugene Parker. During the ceremony he received the NASA Distinguished Public Service Award.

SOLAR

nal Aeronautics and Space Ad. Distinguished Public Service Medal Eugene Parker

Solar Orbiter (ESA) Voyager 40th Anniversary 20 Aug 2017

Geotail (JAXA) WIND MMS (4) ARTEMIS (2)

MISSION