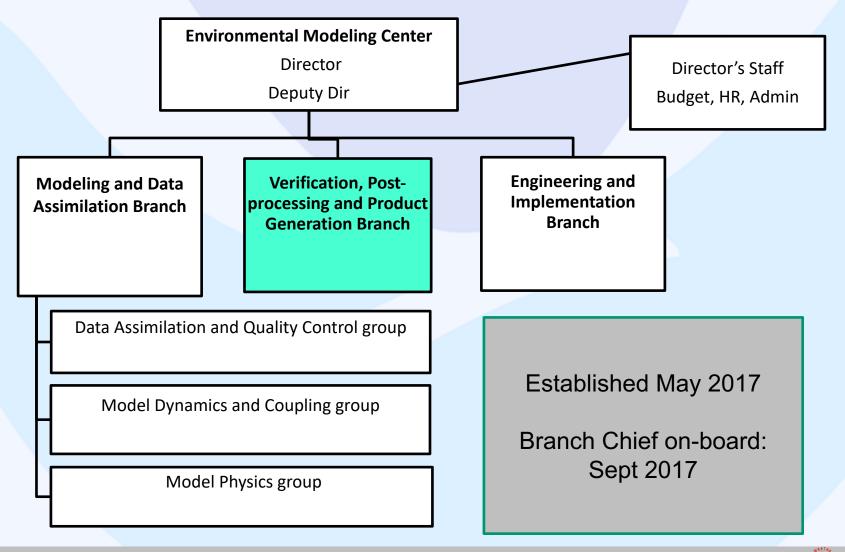


S2S Verification Topics at the NOAA Environmental Modeling Center

Jason J. Levit


Chief, Verification/Post-Processing/Production Generation Branch NOAA/NWS/NCEP/Environmental Modeling Center

With contributions from: Tara Jensen (NCAR) Y. Zhu, S. Saha, M. Mendez, H. Vandendool (EMC)

New EMC Branch - VPPPG

Verification, Post-Processing, Product Generation

VPPPG Branch Purpose

- Consolidates verification and evaluation functions to more efficiently and consistently support all modeling groups.
- Also removes evaluation functions from model science chain of command, ensuring *independent* evaluations

Functions (from new functional statement) include:

- Conduct diagnostic verification studies of model performance on weather and climate time and space scales;
- Processing and quality control of observations;
- Evaluation of new observing systems for the atmosphere, ocean, land surface and cryosphere;
- Data impact studies to evaluate potential improvements in forecast skill with new or improved observing systems;
- **Ensemble products** using models from EMC and external partners;
- Post-processing of model output and generation of products for use by internal and external users and partners.

Employee alignment: 9 federal positions, ~35 contractors supporting projects

S2S Verification Software Systems at EMC

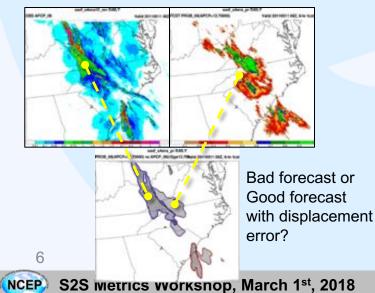
- As part of the Next Generation Global Prediction System (NGGPS), the community is moving towards a <u>unified verification system</u>
- The Model Evaluation Tools (MET+) software system (NCAR) will eventually be the <u>exclusive</u> verification software package used at EMC
- Current EMC S2S verification software at EMC developed in-house
- Essentially the same as CPC's verification software
- If funded, EMC S2S verification software will move to MET+
- EMC is testing the development of ensemble forecasts to 35 days, with varying strategies (Zhu talk at this workshop)
- EMC Verification web page organization coming soon

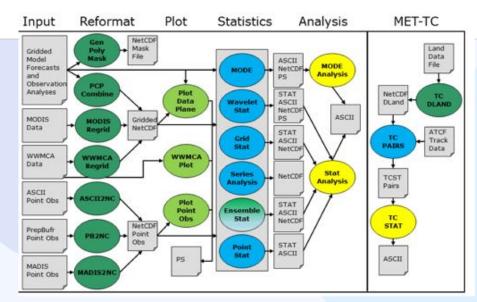
Model Evaluation Tools

Comprehensive and unified verification tool - Make R2O more efficient - Provide a consistent set of metrics

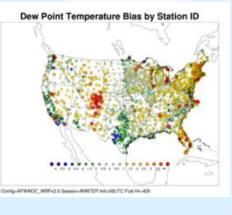
Allows Researchers and Operational Scientists to speak a "common verification" language

User Support of unified package provides greater opportunity to train all on verification best practices

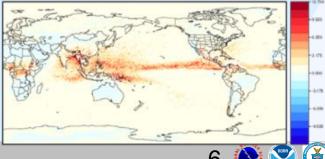




A verification toolkit designed for flexible yet systematic evaluation (supported to the community via the DTC)


• Over 85 traditional statistics using both point and gridded datasets

- Multiple interpolation methods
- Computation of confidence intervals
- Able to read in GRIB1, GRIB2 and CF-compliant NetCDF 4, HDF5
- Applied to many spatial and temporal scales (multi-decadal climate to 15min storm-scale)
- Regridding within the tools and ability to apply complex masking
- 3400+ users, both US & Int'l
 Object Based and Spatial Methods



Geographical Representation of Errors

90th Percentile of difference between two models

S2S Verification Needs at EMC

- Current software and strategy verifies standard metrics, such as these values (for the CFSv2):
 - > 2m temperature
 - Surface precipitation
 - ► MJO
 - ► SSTs
 - Various Anomaly Correlation (500mb, etc.)
- EMC uses verification tools for two main purposes:
 - Internal model verification during testing and refinement
 - Operational verification of real-time models
 - EMC is an implementation Center of R&D from the community
 - Operational verification at EMC needs to be community-vetted and peerreviewed

Scores Card: GEFSv11 21m .vs 41m (August 1 – October 1 2013)

Against NCEP analysis

AND COLORED AND AND AND AND AND AND AND AND AND AN								_																			
EMC Glained Euromobile Versilication Scores and	Der Der Der Der Der Der				Der Der Der Der Der						-	3. Heansphere Day Day Day Day Day						Day Day Day Day Day run to									
Symbol Legend				Der.	Day	Det	Dey	Dec 12	20	Det:	Der	Der	Day	Dey 12	Der	Day.	Day.	Dep-	Day	Day 12	Der	DARY.	Day	Day	Der	Day 12	Der 1
Fig. 1 Sets Set 250 at Set 100 state 125 updates and		-	100674		-	1	-	3.7	-77	-		-	-	47	10	-	-	-		-14	11	-	-	-	-	14	
for completely, specifying informer informs (income National National		Disglary	1000 A	-		-			-	-					-	-	-				-						
the accurate for the protection of the spectrum and	Assessed	-	8.508/Pa		-	-		-	-	-					_	-	-	-		-	-					-	
to candody site as		Tony	200	-		-		-	-	-				-	-	-	-			-	-						
Boothtray Significant Lost Start Date: 20230801		-	2506Pa					-	-										-			_		-			
End Date: 20131030		12.	\$50624					-	-					-	-	-	-			-		-					
AND AND ANALYSIS		Wast	10m	-	_														1.0.1			-	100		1	10,000	
			2506/Pa	1000	-	1.00			1000	1071				1.00	1.000	1000						-					
		Wind.	8006.84	100												1.1							100		100		
		11.000	10m			-			1	-			-			100				-	-	-				-	
Croon		Hinghes	50062+	200	-	1.00		1					100		-	1000		1	1.1	-				-		11111	
Green:		ringer	South Party	2.5.5		1.00	_			Arts 1	-	1	100		1	2000			1000	1000	-		100	1	100	1.1	-
		Teasp	\$506Pa		-	1.00		1	1	100		1	100	1.00	1000	100	1.1	1 m	1.00			1	100		100	100	
significant		1000	- 20	-	-		_	-		-			-	-		_				_	_		100				
Significant	RMSE	11.	1506Pa	-	-	-			-	-	_		1000		_	-					-	_			1.00	-	
		West	\$506Pa	-	_	-		-	-		-		-	-	-	-	-	-		-	-	_	_	_		-	
better		-	- Hua	-	_	-	-	-	-	-	-		-	-	-	-	-	-		-	-	_	100	-	_	-	-
		N-	1506Pa 8306Pa	-	-	-	-	_	-	1000	_		-	-	-	1000		1	-	-	-	-	-	-		-	-
		Wash	10m	-		-		_	-		-			_	_	-	-			-	-	-	-	-	-	-	
(95%)		-	1006Pa	-	-	-		_	-	-	-		-		-	-	-	-	-	-	-	_	-		-	-	
		Heights	10006.7	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
1		-	1508Pa			-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-		
		Triag	2m	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-		-	-	-
	1211		20070					-	_					-	_	-				-	_	-	1000				
Pink:	Burt	U. Waat	850624			100		-	-	1.1.1	_		1000		-	1						_	1			10000	
1 IIIK.			:10m	-	_	1.14		1	-	111			1000		1	1000	1.1.1.4	-	1111			_	10.00	-		1.11	
		V- Wind	2506Pa	1.00				-		20		1.11	1.560	1000	1	100	1115		17/31	- 00	1		1000				
significant			850bPa	1000						100		-	1.16	-		1000	1100		1000	-	- A		010		1000		
			Hea	1.40			1	1	-	100		100	1000	1000	1	1200	1114	4		-			1000			10010	
Woroo		Hrsphi Toup	5006Pa	100			-	-	-	100			100	1.00		-		1		100		-	1000		100		1.00
worse			10008.7			1.00		1	-	100			10.0	1	-	100	1.115		1000			-	100	-	-		
	CRISS		\$508.Pa		-	1	-	_	_	-	-			_	-	-	-		-	_	-	_		_	_		
(95%)			24	-		-		_	-	-			100	_	_	-	_			-	_	_	_		-	-	
(3370)		12.	1.00Ps	-				_	-	-		-			_	-	-			-	-	_	-			_	-
		Wast	10m	-	_	-		_	-	-				-	-	-	-			-	-	-		_		-	-
		¥-	1508.74					-	-	-			-		-		-		-	-	-	-	-		-	-	-
			1506.24		-	-		-	-	-					-		-					-	-		-		-
Crow		Wad	-10m			-			-				-	-	-	-	-	-	-	-		-	-			-	-
Grey:			3006.Pa	-	-	-		-	-	-	-			-	-		-			-	-	-				-	-
-	BSS	Hesphei Teage	3000b.P.						-		-		-	_	-		-			-	-	-				100	
In-			1501.74						_		-				-					_	-	_					
111-			24			1.0		1		10.00			1.00			-			-		1	1	1				
		U. Wind	2508Pe					1	1000						1						1					1000	1000
significant			\$506.94	1					1					1	1.000						1						
			20m	1.00	-	100		-	1.000	1000	-	100			-	-	1.00	1	100		-		10.000	-	1000	1.0	
a mana su fina l		We.	150674					-		10.00				-	-					1	-	-				100	100
or neutral		Wal	850624			12.0		-	-	100			-		-	1.1				-	F		1.110		1.000	100	100
			-10m			1.000		-	-	100			100.00		-	1.00		1			-	1000					1000

S2S Verification Examples at EMC

- Prototype Unified Forecast System: Coupled Subseasonal System
 - GSM: Spectral T574L64 semi-Lagrangian grid
 - MOM5.1: GFDL Ocean Model. Z-coordinates, Tripolar CFSv2 grid 0.25° in the tropics and 0.5° global.
 - CICE5: Los Alamos Sealce Model. Same grid as MOM5.1 ocean model.
 - April 2011 to March 2017
 - 144 forecasts, two weeks apart
- Calibration Climatologies
 - Fit six year time series to a sine wave of period 365.24 days
 - Plus three harmonics
 - Done for each grid point and variable separately
 - Need systematic error correction (SEC) to produce a smooth climo

CONUS 2-meter temperature AC (CPC daily*)

	UFSbench	UFSbench	CFSv2ops	CFSv2ops				
	Raw	Sec	Raw	Sec				
week1	78.0	87.5	79.3	85.9				
week2	40.1	46.7	41.7	46.4				
week3	19.4	23.3	17.6	19.9				
week4	11.0	12.6	0.3	1.8				
week3&4	20.8	26.1	11.6	14.7				

UFSbench equal or better than the CFSv2ops for all lead times.

*CPC Global 0.5 degree Daily 2-m TMIN/TMAX from: ftp://ftp.cpc.ncep.noaa.gov/precip/wd52ws/global_temp/ e.g., CPC_GLOBAL_T_V0.x_0.5deg.Inx.YYYY

S2S Verification Needs at EMC

- WWRP/WGNE Joint Working Group on Forecast Verification Research (JWGFVR)
 - Wiki page: S2S sub-project on verification and products
 - http://s2sprediction.net/xwiki/bin/view/Main/Verification
- WMO Standardized Verification System (SVS) for Long Range Forecasts (LRF)
- WMO's Commission for Climatology (CCI) probabilistic forecasts
- Deterministic vs Probabilistic
- Limited sample sizes and low levels of predictability

Questions and Research

Asking the right verification questions for a S2S system:
 What is S2S forecast "skill"? Needs to be defined for S2S
 Difficult due to poor predictability
 Complicated to design a verification system that works well

Research needs for verification
 What's beyond the standard skill scores?
 Designing the right kind of hindcasts
 Object-oriented verification
 Revisiting the WMO standards

Probabilistic verification

