Weather-to-Decadal Timescales: Enhancing Modeling for Predictions

V. Ramaswamy

Geophysical Fluid Dynamics Laboratory

2017 Atlantic/Pacific TCs

Modest improvement in track. **BIG** improvement in intensity!!

Courtesy J.-H. Chen and Morris Bender

SEASONAL, SUBSEASONAL PREDICTION: 25-KM HIRAM

fvGFS global cloud-resolving simulation

Experimental 10-day forecast; 3-km (c3072); fvGFS init 1 Aug 2016

- FV3 has powered global cloud-scale models at GFDL and NASA for 10+ years
- 8.5 mins/day with ~110K cores: in reach of current computing systems
- Participating in DYAMOND intercomparison (w/ NICAM, ICON, GEOS)

Courtesy: S. J. Lin and X. Chen

GFDL Research on Seasonal to Multi-year Prediction Systems

Models used for research and experimental predictions: [Cat 4/5 hurricanes, Western US precipitation and snowpack, Arctic sea-ice, winter storms,.....]

- 1. CM2.1 Low res atmos (200 km), low res ocean (100 km) (developed circa 2004)
- 2. FLOR Medium res atmos (50 km), low res ocean (100 km) (assembled circa 2012)
- 3. HIFLOR High res atmos (25 km), low res ocean (100 km) (assembled circa 2014)
- CM2.1 and FLOR are run each month for the North American Multi-Model Ensemble (NMME)
- Output provided to the NHC and CPC to inform their seasonal outlooks
- Ocean reanalysis also provided to NOAA

<u>Key point:</u> Prediction systems are made possible through harvesting the fruits of decades long research on MODEL DEVELOPMENT and INITIALIZATION SYSTEMS.

Atmospheric initial conditions important for successfully predicting 2015-16 winter precipitation: FLOR Model

Observed precipitation anomaly

Prediction using only ocean initial conditions

Prediction using ocean and atmos initial conditions

Yang et al. (2018, Clim. Dyn.)

Skill in predicting March snowpack from previous July obs

NEW Generation of NOAA/ GFDL Models: (AM4, CM4) MJO Eastward Propagation and Comparative Metrics

AMIP RMSE Comparison (SST cpld)

Model	CM2	СМЗ	CM4
SST	1.2	1.1	0.83
OLR	7.21	8.56	4.27
TOA SW	12.59	11.26	7.70
Precip	1.13	1.02	0.86
NH DJF SLP	19.4	19.2	18.4
Zonal wind	1.95	1.85	0.94

AM4: Zhao et al., (JAMES, in press)

Towards a <u>Seamless System for Prediction and EArth System Research</u> "SPEAR" ... building from AM4/LM4 and MOM6/SIS2

- Improved models may lead to improved predictions and projections across time scales
- Initialization system is crucial will require considerable additional investment
- > Physical model for prediction, potential to include other Earth System components

Courtesy: T. Delworth **Beyond the traditional definition of extremes: things that matter** van der Wiel et al. 2017a,b; Pascale et al. 2016; Janoski et al., in prep

