Research Using High Vertical-Resolution Radiosonde Data

Marvin A. Geller and Peter T. Love

Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, New York 11794-5000

Background

- Radiosonde data historically recorded at mandatory and significant levels for meteorological purposes.
- Intrinsic resolution much higher.
- Utility of high-resolution data for research purposes highlighted by Allen and Vincent [1995], inspiring SPARC to promote routine archival of high-resolution data worldwide [Hamilton and Vincent, 1995].
- US high-resolution data archived by NOAA at 6-second (~30 m) beginning 1995 – purchased by M. Geller (using NSF funding) and made publicly available at SPARC Data Center http://www.sparc.sunysb.edu (through NASA funding).

New Research Potential

- Very high-resolution data permit analysis of turbulence parameters [Clayson and Kantha, 2008] (Figure 3)
- New applications in fields such as boundary layer research.
- Move from regional to global analyses.

 In 2005 NOAA began upgrading the US upper air network to RRS, archiving data at 1-second (~5 m) resolution facilitating improved analysis and new applications

Applications

Access to high-resolution data has facilitated research in many areas leading to peer-reviewed publications.

- Gravity waves
 - Spatial and temporal variations of wave parameters [Wang and Geller, 2003; Wang et. al., 2005; Zhang et. al., 2010]
 - Spectral characteristics [Gong et. al., 2008; Geller and Gong, 2010; Gong and Geller, 2010]
 - Planetary waves [Wang et. al., 2010]
 - Momentum flux (Figure 1)

Figure 3. Probability densities (in %) of turbulence parameters derived from three months of 1-second resolution radiosonde soundings at Riverton, WY, in winter 2007. (a) The Thorpe scale (m) calculated from the potential temperature profile, which is taken to be proportional to the Ozmidov scale, (b) eddy dissipation rate, and (c) eddy diffusivity.

Availability

- US high-resolution radiosonde data for 1998-2011 available at SPARC Data Center
- http://www.sparc.sunysb.edu/http/hres
- Transition to RRS complete 2012 (Figure 4)

US High Resolution Radiosonde Data at SPARC Data Center

- Structure of the tropopause [Birner, 2006; Bell and Geller, 2008] (Figure 2)
- Tropical convection in relation to mass flux and water vapor budgets [Folkins and Braun, 2003; Folkins and Martin, 2005]
- Parameterization validation [Folkins et. al., 2006]
- Troposphere-stratosphere transport [Corti et. al., 2005; Corti et. al., 2006]
- Ability of GCMs to resolve key features of the tropical tropopause layer [Gettelman and Birner, 2007]
- Validation of satellite observation techniques [Hayashi et. al., 2009]
- Pyrocumulonimbus processes [Fromm et. al., 2010]
- Polar regions [Zhang and Seidel, 2011]
- Effects of geomagnetic storms on the lower atmosphere [Mansilla, 2011]

Figure 4. Number of US stations from which 1-second and 6-second resolution radiosonde data are available at SPARC Data Center.

Workshop

The SPARC DC will be hosting a workshop on research applications of high-resolution radiosonde data.

- May 27-29, 2013
- Stony Brook University, NY
- Topics for discussion
 - New applications made possible by increase to 1-second (or higher) resolution
 - Improvements to existing analysis techniques
 - Uncertainties and limitations
 - Collaborations for regional inter-comparison or global studies

Figure 2. High-resolution radiosonde climatologies (1998–2004) of (left) temperature and (right) stability for Yap Island, 9.48N, 138.8E (red), and Quillayute, WA, 47.95N, 124.55W (blue). Dashed profiles are averages with respect to the tropopause level, and solid lines are with respect to the ground. Establishment of collective repository

Acknowledgements

The SPARC Data Center is supported by NASA. US high-resolution radiosonde data were purchased from NOAA with support of and the National Science Foundation (award AGS1101258).

References

Allen, S. J., and R. A. Vincent (1995), Gravity wave activity in the lower atmosphere: seasonal and latitudinal variations, J. Geophys. Res., 100 (D1), 1327–1350 Bell, S. W., and M. A. Geller (2008), Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models, J. Geophys. Res., 113 (D5), doi:10.1029/2007JD009022. Birner, T. (2006), Fine-scale structure of the extratropical tropopause region, J. Geophys. Res., 111 (D4), doi:1029/2005JD006301 Clayson, C. A., and L. Kantha (2008), On turbulence and mixing in the free atmosphere inferred from high-resolution soundings, J. Atmos. Ocean. Tech., 25 (6), 833–852. Corti, T., B. P. Luo, T. Peter, H. Vomel, and Q. Fu (2005), Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere, Geophys. Res. Lett., 32 (L6), doi:10.1029/2004GL021889. Corti, T., B. P. Luo, Q. Fu, H. Vomel, and T. Peter (2006), The impact of cirrus clouds on tropical troposphere-to-stratosphere transport, Atmos. Chem. Phys., 6, 2539–2547 Durre, I., R. S. Vose, and D. B. Wuertz (2006), Overview of the integrated global radiosonde archive, J. Clim., 19 (1), 53–68, doi:10.1175/JCLI3594.1. Folkins, I., and C. Braun (2003), Tropical rainfall and boundary layer moist entropy, J. Clim., 16 (11), 1807–1820 Folkins, I., and R. V. Martin (2005), The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone, J. Atmos. Sci., 62 (5), 1560–1573 Folkins, I., P. Bernath, C. Boone, L. J. Donner, A. Eldering, G. Lesins, R. V. Martin, B.-M. Sinnhuber, and K. Walker (2006), Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3 : Implications for the water vapor budget, J. Geophys. Res., 111, D23304, doi:10.1029/2006JD007325 Fromm, M., D. T. Lindsey, R. Servranckx, G. Yue, T. Trickl, R. Sica, P. Doucet, and S. Godineekmann (2010), The untold story of pyrocumulonimbus, B. A. Met. Soc., 91 (9), 1193–1209, doi:10.1175/2010BAMS3004.1 Geller, M. A., and J. Gong (2010), Gravity wave kinetic, potential, and vertical fluctuation energies as indicators of different frequency gravity waves, J. Geophys. Res., 115 (D11), doi:10.1029/2009JD012266. Gettelman, A., and T. Birner (2007), Insights into tropical tropopause layer processes using global models, J. Geophys. Res., 112, D23104, doi:10.1029/2007JD008945. Gong, J., and M. A. Geller (2010), Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources, J. Geophys. Res., 115 (D11), doi:10.1029/2009JD012265 Gong, J., M. A. Geller, and L. Wang (2008), Source spectra information derived from U.S. high-resolution radiosonde data, J. Geophys. Res., 113, D10106, doi:10.1029/2007JD009252. Hamilton, K. and Vincent, R. A. (1995), High-resolution radiosonde data offer new prospects for research, Eos, 76 (49), doi:10.1029/95E000308 Hayashi, H., J. Furumoto, X. N. Lin, T. Tsuda, Y. Shoji, Y. Aoyama, and Y. Murayama (2009), Validation of refractivity profiles retrieved from FORMOSAT-3/COSMIC radio occultation soundings: Preliminary results of statistical comparisons utilizing balloon-borne observations, Terr. Atmos. Ocean Sci. , 20 (1), 51–58, doi:10.3319/TAO.2008.01.21.01(F3C). Mansilla, G. A. (2011), Response of the lower atmosphere to intense geomagnetic storms, Adv. Space Res., 48 (5), 806–810, doi:10.1016/j.asr.2011.04.018. Wang, L., and M. A. Geller (2003), Morphology of gravity-wave energy as observed from 4 years (1998-2001) of high vertical resolution U.S. Radiosonde data, J. Geophys. Res., 108 (D16), 4489. Wang, L., M. A. Geller, and M. J. Alexander (2005), Spatial and temporal variations of gravity wave parameters. part I: Intrinsic frequency, wavelength, and vertical propagation direction, J. Atmos. Sci., 62 (1), 125–142. Wang, R., S. D. Zhang, and F. Yi (2010), Radiosonde observations of high-latitude planetary waves in the lower atmosphere, Sci. China Ser. D , 53 (6), 919–932, doi:10.1007/s11430-010-0069-0

Zhang, S. D., F. Yi, C. M. Huang, and Q. Zhou (2010), Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by U.S. radiosonde data, Ann. Geophys., 28 (5), 1065–1074. Zhang, Y., and D. Seidel (2011), Challenges in estimating trends in arctic surface based inversions from radiosonde data, Geophys. Res. Lett., 38, doi:10.1029/2011GL048728.