

US Navy's Earth System Prediction Capability Effort

Daniel Eleuterio, William Schulz, Ron Ferek, Josh Cossuth <u>Office of Naval Research, Arlington, VA, USA</u> Carolyn Reynolds, Neil Barton, Maria Flatau, Sergey Frolov, Andrew Huang, Matt Janiga, Justin McLay, James Ridout, Ben Ruston, Tim Whitcomb, <u>Naval Research Laboratory, Monterey, CA, USA</u> Will Crawford, <u>ASEE post-doc</u>, Philippe Papin, <u>NRC Post-Doc, Monterey, CA</u> Craig Bishop, <u>University of Melbourne, Melbourne, Australia</u> Pat Hogan, Gregg Jacobs, E. Joseph Metzger, Erick Rogers, Clark Rowley, <u>Naval Research Laboratory, Stennis Space Center, MS, USA</u> James Richman, <u>Florida State University, Tallahassee, FL, USA</u>

Extended-range Prediction Plays a Critical Role in DoD/Navy Planning and Policy

- Navy Operational Planning Mission planning (e.g., typhoon risk assessment, ship routing)
- Long-term infrastructure installation and replacement planning

Typhoon Cobra, or Halsey's Typhoon, DEC1944. Three destroyers and 790 lives lost.

US Navy Arctic Roadmap: 2014-2030 Navy Climate Change Task Force

NRL supports US Icebreaker Healy on Geotraces mission

- US Navy has a long history of Arctic Ocean operations and explorations
- Reduced summer sea ice will make Arctic Ocean viable for international shipping and resource explorations, and critical for national security concerns
- Estimates for economic potential of hydrocarbon resources exceed \$1 trillion in U.S. Arctic

Navy S&T Strategic Plan

Match environmental predictive capabilities to tactical planning requirements: Fully coupled (oceanatmosphere-wave-ice) global, regional and local modeling and prediction capabilities for operational planning at tactical, strategic, and subseasonal to seasonal scales

Navy ESPC Model Overview

- Developed to meet Navy needs for global earth system forecasts on timescales from days to months: Initial operational implementation and transition in FY19
- Navy ESPC team: NRL Monterey CA, NRL Stennis MS, NRL DC, NOAA ESMF

U.S.NAVA

- Earth System Modeling Framework (ESMF and NUOPC) used to facilitate upgrades
- Participate in NOAA Mapp SubX (45-d fcsts, 4/week, 1999-present) allows for robust evaluation

Navy ESPC Initial Operational Capability: 2019

Forecast	Time Range, Frequency	Atmosphere NAVGEM	Ocean HYCOM	lce CICE	Waves WW3	Land Surface	Aerosols
Deterministic short term	0-16 days, Daily	T681L60 (19 km) 60 levels	1/25° (4.5 km) 41 layers	1/25° (4.5 km)	1/8° (14 km)	Module within NAVGEM	Module within NAVGEM
Probabilistic long term	0-45 days, 16 members, weekly	T359L60 (37 km) 60 levels	1/12° (9 km) 41 layers	1/12° (9 km)	1/4° (28 km)	Module within NAVGEM	Module within NAVGEM

• IOC: Weakly-coupled DA, perturbed observation ensembles, reforecasts, DA components.

• Final Operational Capability: FY22

U.S. NAVAL

- Seasonal (90-day) ensemble forecasts
- Coupled data assimilation, inline aerosols, middle atmosphere
- Interactive ocean surface waves

*16 members once per week vs. 3 members per day.

Uniqueness of Navy ESPC: High Resolution Ocean and Sea Ice

layer=01 salinity Aug 19, 2018 00Z [93.0H] 18081812 0.070 09 50N 35 34 33 32 45N 40N 35N 30N 50W 40W 75W 70W 65W 60W 55W 45W

U.S.NAVAL

RESEARCH ABORATOR

> GLBb0.08-93.0 Ice Thickness (m): 20180819 2018081812 ci 0.05 0 10 4.6

Navy needs high-fidelity simulations in atmosphere, ocean and sea-ice

SubX Pacific North American Oscillation and North Atlantic Oscillation

Navy ESPC (red) competitive with other SubX models for PNA and NAO forecasts in deterministic mode

From E. Poan and H. Lin, Environnement et Changement Climatique Canada, Recherche en Prevision Numerique, March 2018: "NAO and PNA skill of analysis on the Subseasonal Experiment datasets"

U.S. NAVAL RESEARCH

Wavenumber-frequency diagram of symmetric power normalized by a red noise background for 15°S-15°N 1999-2015 JJA OLR

Janiga et al. (2018, Monthly Weather Review)

NMME-SubX JJA 1999-2015: MJO Forecast Skill

U.S. NAVAL

Navy ESPC Anomaly Correlation skill comparable to CFSv2 at beginning of forecast, and comparable to ECMWF by day 21

Navy ESPC amplitude too strong, in contrast to other models

Navy ESPC, ECMWF, CFSv2

Example of Long-range Forecast Skill: Tropics

Rainfall (5S-5N) for NESM 60-day forecasts as compared to TRMM observations for the DYNAMO period (NOV-DEC 2011)

There are periods when enhanced rainfall and storminess along the equator is predictable more than a month in advance when associated with a strong Madden Julian Oscillation (MJO)

Tropical Cyclone Prediction Using the SubX Forecasts

0-10°N OLR anomalies shaded from (a) NOAA obs. and (b) 45 d NESM forecast. MJO-filtered OLR anomalies are contoured in red every 15 W m⁻².

U.S. NAVAL

ABORATOR

TC tracks are colored by 10 m max windspeed. TC tracking uses TempestExtremes and settings in Zarzycki and Ullrich (2017).

SubX Real-time Forecasts used by National Ice Center

Navy ESPC real time forecasts were leveraged to provide the National Ice Center with 45-day forecasts of sea ice concentration, thickness and drift for long-range planning guidance for 2018 Operation Deep Freeze (McMurdo resupply mission) and ICEX (Beaufort Sea) field campaign support

15 Jan 2018 NRL Navy ESPC 15-day sea ice fraction forecast (color shading) compared to 15 Jan 2018 NIC Outlook (green line) for the Ross Sea, Antarctica

Navy ESPC 60-day forecast of Antarctic Sea Ice Extent from 1 February 2017

U.S. NAVA RESEARC

- Quantitative verification of ice edge forecasts is underway, including comparison with persistence and climatological forecasts
- Large differences between National Ice Center and National Snow and Ice Data Center analyses

Summary

- Operational transition scheduled for FY19
- Relatively high resolution ocean ice models (1/12° for ensembles, 1/25° for deterministic)
- Initial results promising ("in the mix")
- SubX runs being used by National Ice Center for resupply missions and field campaigns

Future work

- Optimize ensemble design and configuration (including model uncertainty)
- Continue model development to address biases
- Develop new extended-range and probabilistic forecast products
- Final operational implementation (2022) will include coupled data assimilation and coupled ocean surface waves

- Global 100-m ocean temp RMSE smaller for Navy ESPC (1/12th HYCOM) then for Global Operational Forecast System (GOFS) 3.0 (1/25th HYCOM)
- Higher-resolution GOFS has similar performance to Navy ESPC (extra slides)

Comparison to Operational Systems

OP5

a)

100

b)

11 8

1JUN 2017

U.S.NAVAL RESEARCH LABORATORY

> **Preliminary analysis of** the deterministic forecasts shows comparable performance between NAVGEM and Navy ESPC

Navy ESPC has lower • **RMSE wind errors than** NAVGEM

Navy ESPC NAVGEM

SubX 1999-2015: MJO Forecast Skill

U.S. NAVAL RESEARCH

> Better-quality ICs for NAVGEM result in better forecasts relative to other systems.

"Experiment of Opportunity" to examine initial condition accuracy impact.

17

Sea Ice Prediction Network Sea Ice Outlooks

Multi-month 10-member Navy ESPC ensemble predictions of September 2017 mean sea ice extent provided to the Sea Ice Prediction Network

U.S. NAVAI RESEARCH

(black) observations from NASA; (light color) NESM ensemble; (bold color) NESM mean

Ensemble spread decreases as lead time increases. Observed ice edge (black) mostly contained within ensemble spread. Comparison of Navy ESPC to operational ocean-ice forecasts (GOFS 3.1) for two years of August Reports

Coupled atmosphere-ocean improves performance over using atmospheric forcing from previous years. Navy ESPC has replaced GOFS for SIO.

Sea Ice Prediction Network Forecasts: September Mean Sea Ice Extent

Figures from www.arcus.org/sipn/sea-ice-outlook September 2015 Sea Ice Outlooks

Navy ESPC is in the middle of the distribution, close to observed value (good!)

Sea Ice Prediction Network Forecasts: U.S.NAVAL RESEARCH **September Mean Sea Ice Extent**

LABORATOR

Figures from www.arcus.org/sipn/sea-ice-outlook September 2016 Sea Ice Outlooks

Navy ESPC is very close to observed value (great!)

U.S. NAVAL RESEARCH LABORATORY September Mean Sea Ice Extent

Navy ESPC forecasts vary widely (interesting!)

U.S. NAVAL RESEARCH LABORATORY DYNAMO Case Study 61-Day Hindcasts from 1 Nov, 2011 with ESPC Coupled System Physics

The DYNAMO period in 2011 has served as a development test case. Significant improvements have been achieved in the representation of the three MJO events. Coupled Physics Version 1 (CV1) Modified cloud top condition and trigger for turbulence-for for for turbulence-for for degree were the turbulence-for for the turbulence-for for tur

Nov 1

140E

mm

Extra Slides

23