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Project Goals

* Exploit very fast analytic radiative transfer
solvers to optimize the CRTM in calculating all-
sky microwave and IR radiances for clouds,

precipitation and aerosols

 Demonstrate the impact of these
improvements in the GOES-5 DAS and other

systems

* Introduce fully polarized radiative transfer into
the CRTM

17th JCSDA Technical Review Meeting & Science Workshop, 29-31 May, 2019



Year 2 Accomplishments

* |Integrated 6-Eddington solver (FWD/TL/AD) into
the CRTM

* Integrated multi-stream Successive-Order-of-
Scattering (SOS) solver (Greenwald et al. 2005)
into the CRTM

— Improvements include bug fixes, reduced memory
requirements and faster calculations for strongly
absorbing wavelengths

 Extended benchmark testing to infrared; began
developing methods to optimize IR calculations
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Forward Model Runtime Performance

* Profiles come from WRF model run of
Hurricane Katrina (1.5 km; 948 x 1096)
* Tests for two instruments:

— GMI (13 channels; 10.6-183 GHz)
— HIRS-4 (19 channels; 3.76-14.9 um)

GMI (6=52.8°) HIRS-4 (6=0°)

SOl +35 +53 +68 +89 +108 +87 +97 +129 +159
SOS -45 -38 -36 -35 -37 -49 -46 -38 -34

EDD -66 -74 — -70 -74 — —
EMIS -80 -85 — -86 -88 — —
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Forward Model Accuracy

e 4-stream solver performs best over a range of
wavelengths and accuracies but is relatively
slow

e 6-Eddington solver performs poorly at IR
wavelengths, where absorption is stronger

GMI (6=52.8°) HIRS-4 (6=0°)
Error EMIS | EDD 2 4 EMIS EDD 2 4
+0.5K 69% 58% 79% 99% 49% 18%

+1K 73% 76% 83% 99.7% 60% 32%
+2K 77%  95% 87% 99.9% 73% 57%
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Why Consider Polarization?

Many satellite instruments exploit polarization to sense
properties of clouds, precipitation, aerosols, and surface

Clouds

— Residual polarization (I,Q,U) in solar measurements (e.g,
MODIS, VIIRS) not accounted for in forward models (Yi et al.
2014)

— Multi-angle polarized reflectance (I,Q,U) measurements (e.g.,
POLDER; MetOp-SG 3MI) are sensitive to cloud particle size and
phase (DiNoia et al. 2019)

— Lidar linear depolarization (I,Q) measurements (e.g., CALIOP)
are sensitive to ice crystal shape and orientation, especially to
horizontally oriented crystals (Sassen and Zhu 2009)

— Sub-mm (183-664 GHz) polarization measurements (1,Q) are
sensitive to ice particle shape (MetOp-SG Ice Cloud Imager)
(Evans and Stephens 1995; Fox et al. 2019)
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Polarization Effects from Precipitation
and Aerosols

* Precipitation

— Polarization signatures (I,Q) generated by large horizontally-oriented
non-spherical ice particles have been observed to be significant and
very common at microwave frequencies (Galligani et al. 2013; Zeng et
al. 2019)

e Aerosols

— Space-based multi-angle multi-spectral polarimeters (I,Q,U) provide
most of the detailed information about aerosols (Dubovic et al. 2018)

— Particle size (e.g., POLDER, APS/Glory, HARP/Cubesat, 3MI, MAIA/OTB-
2, SpexOne/PACE, ScanPol + MSIP)

— Particle morphology (e.g., POLDER, APS/Glory, 3MI, SpexOne/PACE,
ScanPol + MSIP)

— Complex refractive index (e.g., POLDER, APS/Glory, HARP/Cubesat,
3MlI, SpexOne/PACE, ScanPol + MSIP)

— Single scattering albedo (e.g., POLDER, VNIR-POL, SpexOne/PACE)
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Surface Polarization Effects

* Soil moisture and vegetation significantly
impact polarization (I,Q) at microwave
frequencies (SSMIS, AMSR-E, AMSR2, GMI,

etc.)

* The ocean is highly polarized at microwave
frequencies. Fully polarimetric passive
microwave measurements (1,Q,U,V) of ocean

surface are used to detect the wind vector
(WindSat)
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Year 2 Accomplishments

e Evaluated Vector Adding Doubling (VAD) model
(TAMU)

— Well tested and accurate multi-stream model
— Solar wavelengths only (no thermal source)

— Code is very complicated; challenge to write TL/AD
models

* Vector SOI solver development (in progress)
— Default CRTM solver (MOM) deemed too complex
— SOI FWD/TL/AD models include thermal sources only

— Assume randomly oriented particles; azimuthal sym.

17th JCSDA Technical Review Meeting & Science Workshop, 29-31 May, 2019

10



Vector SOl Development

Wrote code to develop the vector SOl outside of
the CRTM

Selected test profiles from a high-resolution WRF
model simulation of a mid-latitude frontal system

Patrick Stegmann provided a way to compute
phase matrix elements P,,, P,, P35 using the
asymmetry factor

Borrowed code from rt3 (Evans and Stephens
1991) to generate the phase matrix and rotate it
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Year 3 Plans

Modify existing SOl FWD/TL/AD models for vector
radiative transfer
Other related code development:

— Polarization scattering matrix (FWD/TL/AD) needed
for the vector solver

— Restructure CRTM to compute radiances for multiple
channels using a single RT call; currently limited to
one channel per call

Develop TL/AD models for SOS solver
Complete IR optimization for multi-stream solvers
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