

Bayesian Data Assimilation within the AOML-UMD Ensemble Prediction System

Jonathan Poterjoy

University of Maryland NOAA Atlantic Oceanographic and Meteorological Laboratory

Thursday, 30th May 2019

Regional modeling framework

AOML-UMD Ensemble Prediction System

Main collaborators: Gus Alaka (AOML), Henry Winterbottom (I. M. Systems Group)

- Ensemble analysis and prediction system for the NOAA HWRF model using GSI EnKF.
- Sequential data assimilation is performed over a regional domain using GFS to provide boundary conditions.
- Conventional and clear-air satellite radiance measurements are assimilated every 6 h.
- Bias correction for radiances performed online.

Regional modeling framework

MSLP (contours) and 850-mb vorticity increments (shading) for member 1

The goal is to estimate a model state's pdf conditioned on observations.

 \mathbf{x}_t and \mathbf{y}_t are given by:

$$\begin{aligned} \mathbf{x}_{t+1} &= M(\mathbf{x}_t) + \eta_t, \\ \mathbf{y}_t &= H(\mathbf{x}_t) + \epsilon_t. \end{aligned}$$

Monte Carlo approach: DA step

Draw \mathbf{x}_t^n for $n = 1, 2, ..., N_e$, from $p(\mathbf{x}_t | \mathbf{y}_{0:t})$.

Monte Carlo approach: prediction step

Pass samples through forecast model.

 $\mathbf{x}_{t+1}^n = M(\mathbf{x}_t^n) + \eta_t^n$, are then samples from $p(\mathbf{x}_{t+1}|\mathbf{y}_{0:t})$.

Particle filters (PFs) use ensemble members ("particles") to approximate prior and posterior distributions.

In the context of DA schemes currently used for NWP:

- EnKFs apply a sample estimate of mean and covariance parameters needed for Gaussian density estimation.
- PFs use samples to apply a Dirac delta function approximation of probability densities.

Particle filters (PFs) use ensemble members ("particles") to approximate prior and posterior distributions.

- Even for nonlinear M(x) and H(x), and non-Gaussian errors PFs converge to the Bayesian solution as
 - i. ensemble sizes increase.
 - ii. model and observation errors become more reliable.
- Like EnKFs, PFs require ensemble sizes that increase with the problem size.
- Approximations are needed to prevent ensemble variance from collapsing to zero for NWP; namely, localization and inflation.

Poterjoy (2016) proposes a localized PF algorithm that fits easily into community software packages for ensemble DA:

- Data Assimilation Research Testbed (DART) maintained by the Data Assimilation Research Section of NCAR
- Ensemble component of operational Gridpoint Statistical Interpolation (GSI) system maintained by DTC

JEDI?

For example, consider the 2-D problem:

- Blue shading: $p(x_1, x_2)$
- Blue markers: samples from $p(x_1, x_2)$
- Dashed line: direct observation of x₁, denoted y₁

Observation Space

State Space

Each \mathbf{x}^n is updated via a linear regression from obs-space update:

$$\overline{\mathbf{x}} \leftarrow \overline{\mathbf{x}} + \mathbf{K}(y_1 - x_1) \mathbf{x}^{n'} \leftarrow \widetilde{\mathbf{K}} \mathbf{x}^{n'}, \text{ for } n = 1, ..., N_{\epsilon}$$

The algorithms described in Poterjoy (2016) and Poterjoy et al. (2019) follow a similar strategy.

10/22

The algorithms described in Poterjoy (2016) and Poterjoy et al. (2019) follow a similar strategy.

State Space

 $\tilde{X}_{2}^{0.02}$

Original EnKF update of each \mathbf{x}^n is replaced by:

$$\begin{split} \overline{\mathbf{x}} &\leftarrow \sum_{n=1}^{N_e} \omega^n \circ \mathbf{x}^n, \\ \mathbf{x}^{n'} &\leftarrow \mathbf{r}_1 \circ \mathbf{x}^{n'} + \mathbf{r}_2 \circ \mathbf{x}^{k'_n}, \end{split}$$

where ω^n , \mathbf{r}_1 , and \mathbf{r}_2 are formulated to reflect a mix of PF and prior solutions.

Failure of PF without ρ and β

Bootstrap PF Local PF 0.04 0.04 p(x,,x2) p(x¹, x²) 10 -10 10 X Х, -10

In its standard form, the Bootstrap PF collapses easily for example problem with $N_{\gamma} = 2$ and $N_e = 80$.

Month-long experiments from Sept. 2017

MSLP and conventional ob locations every 6 h

MSLP and radiance ob locations every 6 h

Experiment setup and verification

Cycling data assimilation tests:

- Model grid spacing: 18 km
- Observation frequency: 6 h
- Ensemble DA schemes: EnKF (Whitaker and Hamill 2002) and a variant of the Poterjoy (2016), Poterjoy et al. (2018) local PF
- Ensemble size: 60

Experiment setup and verification

Verification:

- Forecasts: 20-mem ensemble 120-h forecasts initialized twice a day
- **Spin up**: verification begins 5 d into cycling DA experiments
- Verifying metric: volume-average root mean square difference between ensemble mean forecasts and GFS analysis

RMSEs averaged over 52 sets of ensemble forecasts

Ensemble mean forecast RMSE

Impact of data assimilation on wind field

Impact on uncertainty estimate from ensemble

Average ensemble spread in domain-mean vertical vorticity from 0 - 120 h.

Formulating PF algorithms that operate efficiently for high-dimensional problems remains an active area of research.

- Poterjoy et al. (2019) highlight some (but not all) recent advancements for filter discussed here.
- Results from month-long regional experiments are encouraging:
 - i. First real test for synoptic-scale NWP.
 - ii. Large room for improvement.
- Some national centers are already exploring the use of PFs for NWP; e.g., Potthast et al. (2019).

Let's start re-thinking Gaussian assumptions for obs errors.

 Obs errors estimated online using Gaussian mixture approximation: early tests with Lorenz (1996) model.

•
$$N_x = 40$$
, $N_y = 20$, $\Delta t = 0.05$ time units (~ 6 h)

Let's start re-thinking Gaussian assumptions for obs errors.

 Obs errors estimated online using Gaussian mixture approximation: early tests with Lorenz (1996) model.

•
$$N_x = 40$$
, $N_y = 20$, $\Delta t = 0.05$ time units (~ 6 h)

Localization for PFs is still an evolving idea.

 Current strategy: generate localized particle updates through a single step.

$$\begin{split} \overline{\mathbf{x}} &\leftarrow \sum_{n=1}^{N_e} \omega^n \circ \mathbf{x}^n, \\ \mathbf{x}^{n'} &\leftarrow \mathbf{r}_1 \circ \mathbf{x}^{n'} + \mathbf{r}_2 \circ \mathbf{x}^{k'_n}, \end{split}$$

Localization for PFs is still an evolving idea.

 Current strategy: generate localized particle updates through a single step.

$$\begin{split} \overline{\mathbf{x}} &\leftarrow \sum_{n=1}^{N_e} \omega^n \circ \mathbf{x}^n, \\ \mathbf{x}^{n'} &\leftarrow \mathbf{r}_1 \circ \mathbf{x}^{n'} + \mathbf{r}_2 \circ \mathbf{x}^{k'_n}, \end{split}$$

Localization for PFs is still an evolving idea.

- New approach: break original update into a series of intermittent steps.
- Each intermittent step uses particle weights with larger "effective ensemble size" than one single update.

Outstanding PF questions relevant to this meeting:

- What are the implications for assimilating all-sky radiance measurements?
- What can be done with larger ensembles?
- Can nonlinear DA provide additional benefits for modeling systems configured to use rapid updates?

My contact info $\frac{e}{\underline{u}}$	<u>mail</u> : poterjoy@umd.edu <u>rl</u> : https://poterjoy.com
---	--

Other PF-based strategies using localization

Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775.

Chustagulprom, N., S. Reich, and M. Reinhardt, 2016: A hybrid ensemble transform particle filter for nonlinear and spatially extended dynamical systems. SIAM/ASA J. Uncertainty Quantification, 4(1), 592–608.

Lee, Y., and A. J. Majda, 2016: State estimation and prediction using clustered particle filters. PNAS.

Lei, J., and P. Bickel, 2011: A moment matching ensemble filter for nonlinear non-Gaussian data assimilation. Mon. Wea. Rev., 139, 3964–3973.

Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high dimensional geophysical systems. Nonlinear Processes in Geophysics, 23, 391–405.

Robert, S., and H. R. Künsch, 2017: Localizing the ensemble Kalman particle filter. arXiv:1605.05476.

Tödter, J., P. Kirchgessner, L. Nerger, and B. Ahrens: 2016: Assessment of a Nonlinear Ensemble Transform Filter for High-Dimensional Data Assimilation. Mon. Wea. Rev., 144, 409–427.