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Light scattering by aerosols

Light scattering calculations for
aerosols require assumptions
about: 
• Particle shape
• Particle number size

distribution
• Refractive index



Literature research for existing 
refractive index spectra
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Optical Character Recognition for 
Automatic Database Acquisition
• Rarely refractive index values are available as 

Dispersion Relations.
• Vast data tables are preferred by authors.
• Reading the huge databases and typing them in 

manually is time-consuming, error-prone and a 
bad for the eyes of the reader.

• In response, a simple Optical Character 
Recognition (OCR) code has been developed in 
Python

• OCR code fails if text misalignment is too large, 
e.g. for books, but provides a huge speed-up and 
considerable increase in reliability in many other 
cases, e.g. for PDFs.
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S/A DUST GROUP MODEL
Dust composition is modeled based on a size-dependent composition
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Example: Northern Saharan Sand Composition
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Actual 
Composition



Example: Northern Saharan Sand Composition
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Simplified 
group model



Regional Dust Composition Overview
Saharan & Asian Dust composition is decomposed into a number of component groups clustering distinct minerals and chemical 
species. 
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REFRACTIVE INDEX SPECTRA OF INDIVIDUAL 
MINERALS

Data base acquisition status
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Quartz group
All databases for real part. Imaginary part.
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Quartz group (moving average filter)
All databases for real part. Imaginary part.
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Silicates group
All databases for real part. Imaginary part.
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Carbonates group
All databases for real part. Imaginary part

14



Sulphates group
All databases for real part. Imaginary part.
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Iron oxides group
All databases for real part. Imaginary part.

16



Soot group
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All databases for real part Imaginary Part



BRUGGEMAN EFFECTIVE MEDIUM 
APPROXIMATION

Heterogeneous Material
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Effective Medium Refractive Index

• Common practice is to compute the refractive index of mineral 
dust via the volume ratio of its constituents.

• Here, the effective refractive index is calculated based on the 
method of Bruggeman (Ann. d. Phys. 1935): 
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Example: Silicates group
All databases for real part. Imaginary part.
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Effective Spectrum for size=0.1 µm

Silicate features 
dominate for this 
size.



Comparison to simple volumetric addition (size 0.1 µm)
Real part. Imaginary part.



Effect of Dust Particle Size Variation



Size-Integrated Refractive Index

Bimodal particle number
size distribution measured
at Cap Verde used as
weighting function.



KRAMERS-KRONIG ANALYSIS
Ensuring a Causal Spectrum

25



Kramers-Kronig Analysis of effective spectrum

• Method based on Iwabuchi and Yang (2011), which is in turn 
based on S. G. Warren (1984).

• Enforce Cauchy’s residue theorem to compute the real part of 
the refractive index using the trapezoidal rule and skip the 
singularity at ν.
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Hilbert transform validation for H2O refractive index 
spectrum
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Quadrature Convergence
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SENSITIVITY ANALYSIS
Local and Monte Carlo Sensitivity
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Bruggeman ODE

• A unique physical solution for a Bruggeman effective medium 
with an arbitrary number of components can be found via an 
ODE approach.

• This also provides an elegant framework for sensitivity analysis
with respect to the ODE parameters (i.e. particle composition
and components).
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Monte Carlo Results: Composition



Monte Carlo Results: Composition



Monte Carlo Results: Component Index 



Local Sensitivity

• Sensitivity ODE:
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Local Sensitivity: Example
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