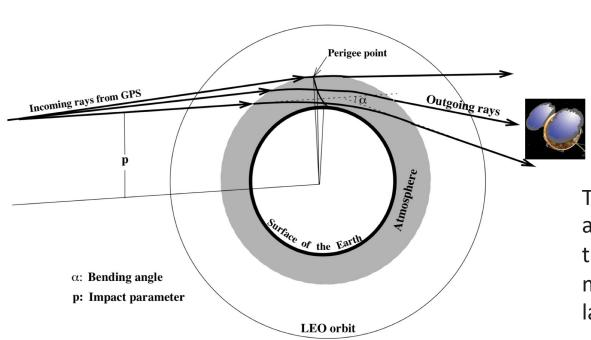


Implementation of GNSS RO operators in JEDI/UFO

Hailing Zhang, François Vandenberghe, Hui Shao, James G. Yoe Joint Center for Satellite Data Assimilation

Acknowledgement: JEDI core team: Yannick Tremolet, Anna Shlyaeva, Dan Holdaway, Mark Miesch, Maryam Abdioskouei, Stephen Herbener, Xin Zhang GNSSRO team: Surya Dutta



* Global Navigation Satellite System Radio occultation

- GNSSRO operators Overview
- JEDI GNSSRO operators status
- Preliminary tests
- Generic QC

GNSSRO operators Overview: Geometry

A setting/rising radio occultation (RO) occurs when a low-Earth orbit (LEO) sets/rises behind the Earth.

The ray connecting the GNSS and LEO is refracted/bent due to the different temperature and moisture of the atmospheric layers.

The total amount of bending accumulated during the ray path trajectory, i.e., the **bending angle**, can be retrieved.

GNSSRO operators Overview

	BndGSI	BndROPP1D	BndROPP2D	RefGSI
Operation	NCEP NRL		ECMWF	NCEP
Assimilated Observable	Bending angle	Bending angle	Bending angle	refractivity
	Vertical integral		take account of the real limb nature of the measurement; solve a set of ray path equations	Local refractivity operator
Equation	$\alpha(a) = -2a \int_{a}^{\infty} \frac{d\ln n}{\sqrt{x^2 - a^2}} dx$		$\begin{aligned} \frac{dr}{ds} &= \cos\phi \\ \frac{d\theta}{ds} &= \frac{\sin\phi}{r} \\ \frac{d\phi}{ds} &\approx -\sin\phi \left[\frac{1}{r} + \left(\frac{\partial n}{\partial r}\right)_{\theta}\right] \end{aligned}$	$N = 77.6 \left(\frac{P}{T}\right) + 3.73 \times 10^5 \left(\frac{P_v}{T^2}\right)$
Reference	Cucurull et al. 2013	Healy and Thepaut 2006	Healy et al. 2007	Cucurull et al. 2007

* **ROPP** – Radio Occultation Processing Package by EUMETSAT

JEDI GNSSRO operators status

	GitHub, Inc. [US]	https://github	.com/JCSDA/ufo/	tree/deve	lop/src/ufo/gns	sro	
arch or ju	imp to	/	Pull requests	Issues	Marketplace	Explore	
	B JCSDA / ut ↔ Code	Private	1 Pull requests	5	Wiki 🔟 Ins	sights	
	Branch: develop		ufo / gnssro /				
	hailingz a	nd shlyaeva Featur	e/gnssro bndgsi (#3	11)			
	BndGSI		Feature/gnssro	bndgsi (#	311)		
	BndROPP1	D	Feature/gnssro	bndgsi (#	311)		
	BndROPP2	D	Feature/gnssro	bndgsi (#	311)		
	QC		Feature/gnssro	bndgsi (#	311)		
	RefGSI		Feature/gnssro	bndgsi (#	311)		
	utils		Feature/gnssro	bndgsi (#	311)		
	CMakeLists	.txt	moved atmosph	nere/* and	generic/* dirs u	p one level	

IEDI GNSSRO operators status

ROPP1D/2D bending angle operators

- Originally contributed by Ben Ruston (NRL) and Sean Healy (ECMWF) in the GNSSRO code sprint in August 2018
- Radio Occultation Processing Package (ROPP) is expected to be obtained from EUMETSAT, and Interface/cmake files are provided at

https://github.com/JCSDA/ropp-ufo

 Operators, model-obs-ufo interface, at <u>https://github.com/JCSDA/ufo/tree/develo</u> <u>p/src/ufo/gnssro/BndROPP2D</u>

ObsTypes:
- ObsSpace:
name: GnssroBndR0PP2D
ObsDataIn:
<pre>obsfile: ROData/gnssro_obs_2018041500_f.nc4</pre>
ObsDataOut:
<pre>obsfile: ROData/gnssro_3dvar_gfs_ropp2d_2018041500_m.nc4</pre>
ObsOperator:
name: GnssroBndR0PP2D
ObsOptions:
res: 40
n_horiz: 31
Covariance:
covariance: diagonal
- Filter: Domain Check
where:
– variable: impact_height
minvalue: 0
maxvalue: 50000
- Filter: ROobserror
<pre>variable: bending_angle</pre>
errmodel: BOPP

6

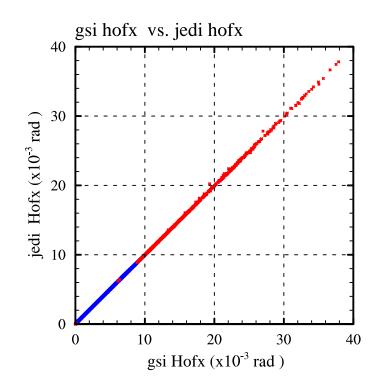
EDI GNSSRO operators status

GSI bending angle operator

- Follow GSI operation (Cucurull et al. 2007; 2013)
- Originally contributed by Hui Shao (JCSDA) in the GNSSRO code sprint in August 2018
- Profile check not applied yet:
 - Observation error inflation
 - Observation-side super refraction check
- Flexibilities through yaml configuration
 - Generic QC (more later)
 - Observation error model

```
ObsTypes:
– ObsSpace:
    name: GnssroBndGSI
    ObsDataIn:
     obsfile: ROData/gnssro_obs_2018041500_f.nc4
    ObsDataOut:
     obsfile: ROData/gnssro_3dvar_gfs_gsi_f.nc4
  ObsOperator:
    name: GnssroBndGSI
    ObsOptions:
      use_compress: 1
  Covariance:
    covariance: diagonal
  ObsFilters:
  - Filter: Domain Check
    where:
    - variable: impact_height
      minvalue: 0
      maxvalue: 50000
 - Filter: Background Check
    variables:
    - bending_angle
    threshold: 3.0
  - Filter: ROobserror
    variable: bending_angle
    errmodel: ROPP
```

JEDI GNSSRO operators status

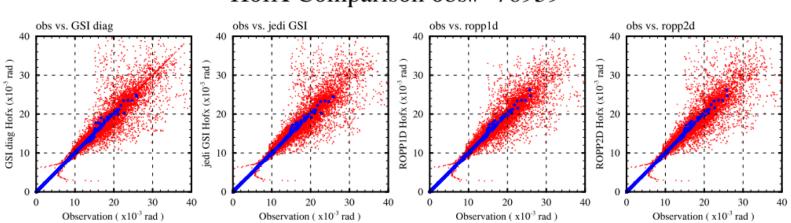

- There are two RO observation error models for bending angle and one for refractivity
- Currently applied through ObsFilter factory
- Easy to add new error models

- Filter: ROobserror variable: bending_angle errmodel: ROPP

- Filter: ROobserror variable: bending_angle errmodel: GSI

Unit test – BndGSI

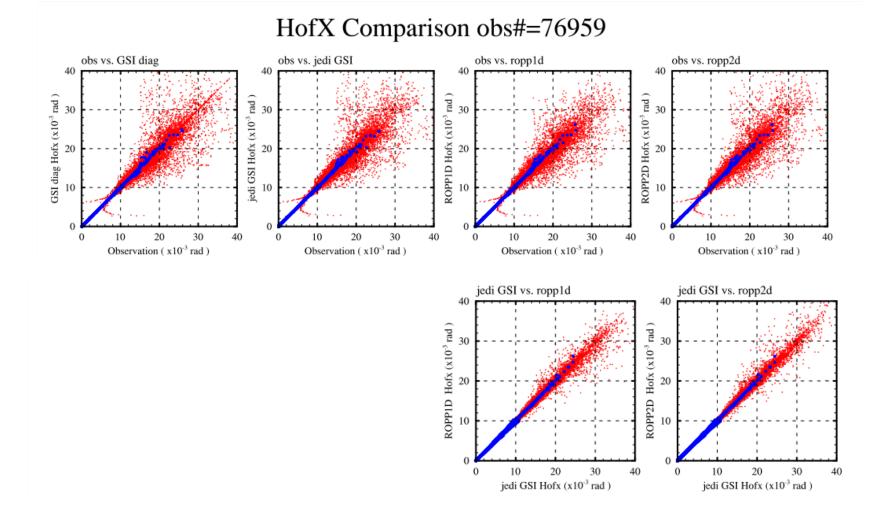
- 2018041500 NCEP GPSRO.bufr
- Processing
 - Run modified GSI to generate model background profiles at each observation location
 - Output GSI HofX values and QC flags
- Unit test
 - use the exactly same background "diagnosed" in GSI
 - Run JEDI BndGSI to generate JEDI HofX

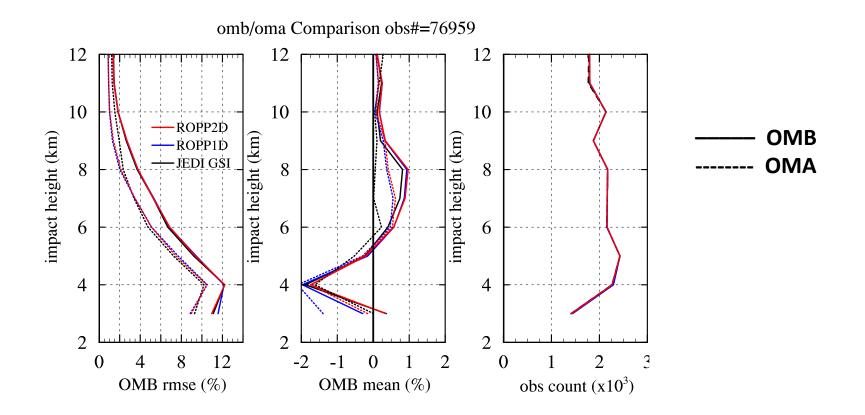

FV3JEDI HofX

GSI Diag HofX:

obtained by running GSI; background is GFS 6h forecast @T1534 L64 GSI Horizontal interpolation

JEDI HofX:


obtained by running fv3jedi_hofx; background is fv3 6h forecast @c48 64L JEDI BUMP Horizontal interpolation



HofX Comparison obs#=76959

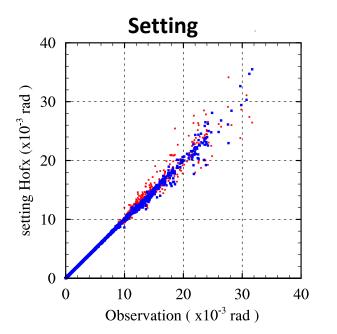
Time: 2018041500 Blue: GSI QC flag= 0 Red: GSI QC flag > 0

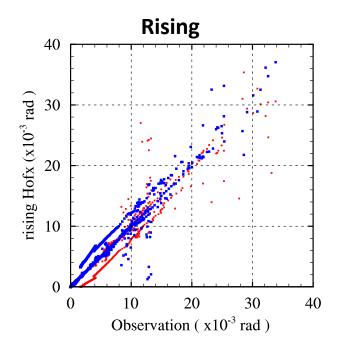
A STILLING BAD

STELLITE BAT

Generic QC

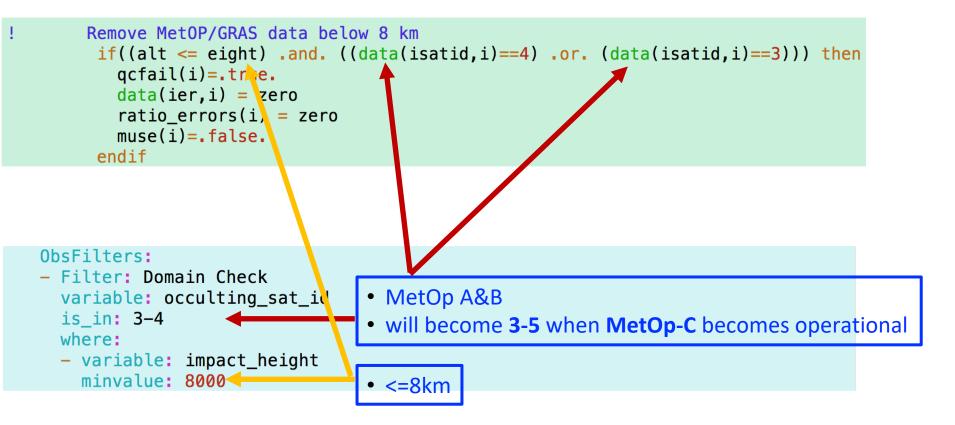
- Apply generic QC in configuration files than in codes.
 - No need of recompiling
 - Reduces R2O time
- Easy to handle complex satellite configuration
 - Allows flexible rejection combination of a particular LEO, a particular GNSS constellation, or rising/setting profiles
 - Useful to assess new missions, e.g., Metop-C, KOMPSAT5, commercial missions, etc


Generic QC : example 1


Rejecting KOMPSAT5 rising profiles

Data:

- KOMPSAT5 bending angles at 2018041500
- Approved for NCEP operation
- Setting only



Generic QC: example 2

Rejecting MetOP-A&B below 8 km impact height

Summary and Future work

- Four GNSSRO operators are implemented and preliminarily tested in JEDI (with fv3 and MPAS)
- Working on more real case study with higher-resolution fv3 model background