
Testing Framework in JEDI

Maryam Abdi-Oskouei
In collaboration with the JEDI core team

JCSDA Workshop, May 30th, 2019

mer-a-o

@maryamabdi7

maryamao@ucar.edu



Deploy

Test

Design De
ve
lo
p

Deploy

Test

Design De
ve
lo
p

Deploy

Test

Design De
ve
lo
p

Design

Develop

Test

DeployW
at
er
fa
ll

A
gi
le

Agile	methodology	enables	the	key	stakeholders	and	
developers	to	collaborate	more	closely	to	accelerate	delivery

2

- Iterative development
- Requirements and solutions evolve through collaboration between self-organizing cross-

functional teams



Testing	is	one	of	the	key	components	of	Agile	methodology

3

Deploy

Test

Design De
ve
lo
p

Deploy

Test

Design De
ve
lo
p

Deploy

Test

Design De
ve
lo
p

A
gi
le

Agile testing:
- Continuous process
- Continuous feedback
- Issues are fixed within the same iteration



Test	suites	in	JEDI

1. Unit tests (Boost C++ libraries is removed and replaced with eckit; you don’t need to compile BOOST! )
• Evaluate Boolean expressions during the execution of some particular component of the code
• Is the input correct?
• Does some measure of the State norm agrees with a known value within some specified tolerance?
• Is this particular variable positive?

2. Integration and system tests (Application tests)

4



Testing	Workflow	in	JEDI

5

Pull Request
?

✓
Merge Code

X

Master or 
develop 
branch

Code 
development

Release

Reviewers - Time consuming
- Prone to error



Automated Testing	Workflow	in	JEDI

6

Pull Request
?

✓
Merge Code

X

Master or 
develop 
branch

Code 
development

Release

Docker

HPC cluster

- Run tests automatically with a new pull request or a 
new commit to an existing pull request

- Using Docker images, you can test different builds
- Run tests on AWS or HPC 
- Schedule Cron jobs 



Travis-CI	pieces	in	JEDI	GitHub	repo

7

Travis-CI currently on OOPS and UFO repositories
Code added to repositories:
.travis.yml : 

sets travis-ci environment 
builds and runs Docker image using the latest Docker image on DockerHub
builds repo inside the container
runs ctests inside the container and generates reports needed for CodeCov
uploads reports to CodeCov

Dockerfile :
builds tools that are not already on jcsda/docker:latest
customizes the container

default-mca-params.conf:
helps solve the problem with running mpi on docker container and oversubscription setup

.codcov.yml



Example	of	Travis-CI	interface	in	OOPS

8



9



10



CodeCov report:

11https://codecov.io/gh/JCSDA/oops

https://codecov.io/gh/JCSDA/oops


In	progress:

• Implement Travis-CI on all JEDI repositories
• Add test dependencies to the testing workflow
• Adding more application tests to increase test coverage
• Schedule Cron jobs on AWS to run computationally expensive jobs periodically 

12


