Optical flow technique: from the aurora to the solar wind B. Gallardo-Lacourt, L. V. Goodwin, L. Kepko, E. Spanswick, E. Donovan, and C.

DeForrest

Optical Flow (OF) Technique

- Optical flow used here (also called gradient or differential method) is the representation of the apparent two-dimensional motion of an "object"
- We calculate the motion between two image frames

Constrains to consider

Luminosity consider constant (no changes) – Robust estimator

Issues with no welldefined structure's boundaries

OF technique applications on CMEs

Colaninno and
 Vourlidas (2006)
 Calculated the
 motion of a CME
 observed by LASCO
 using the optical
 flow method

OF technique applications on CMEs

 Colaninno and Vourlidas (2006)
 Calculated the motion of a CME observed by LASCO using the optical flow method

> This methodology was validated by using a synthetic CME

OF technique applications to STEREO data

COR1 Attempt

OF technique applications to STEREO

COR1 Attempt

Radial component L3: 2014-04-14T00:06:00.008 Radius (Apparent Solar Radii) 14 **Courtesy of Craig DeForest** 13 12 Craig DeForest COR2 L3 Campaign data analysis 11 10 9 6 0.00000 45.00000 90.00000 135.00000 180.00000 225.00000 270.00000 315.00000 360.00000

Azimuth (Degrees)

OF technique applications to STEREO – Radial component

OF technique applications to STEREO – Azimuthal component

Plasma motion in the near-Earth space environment

This work is motivated by Magnetosphere-ionosphere plasma convection/convection patterns

The motion of auroral structures

In the aurora, some of the structures move with convection

The motion of auroral structures

In the aurora, some of the structures move with convection

Available auroral optical data

White light – THEMIS ASI

Redline – REGO ASI

Near Infrared and RGB – TREx

TREx sensors will create a data cube to study the space environment and its effects on our atmosphere and technology. 6x Blue line imagers (1s-30Hz cadence)

OF technique—applications to the aurora

OF technique—applications to the aurora

- Applying this technique, we easily identified auroral arcs' motion
- We reduced noise by rebinning pixels in the original image
- We identified faint structures, that could otherwise be missed

OF technique applications to the aurora

OF technique applications to the aurora

OF technique—uses of SuperDARN for validation (preliminary)

- Line-of-sight (LOS) velocity observations obtained by SuperDARN radars are projections of the ionospheric plasma velocity along radar beam directions [e.g., *Greenwald et al.*, 1995; *Chisham et al.*, 2007]
- In the aurora, some of the structures move with convection (e.g., patchy pulsating aurora and omega bands). SuperDARN measurements can help us validate the OF flow technique

OF technique—uses of ISR for validation (preliminary)

- Incoherent Scatter Radars (ISR) overlap with auroral imagers
- These radars provide electron density, line-of-sight flow velocity, electron and ion temperature

Conclusions and Future work

- Optical flow technique is a good approach to analyze structures' motion
 - Tracking of auroral arcs or streamers
 - Tracking in STEREO COR2-L3 data
- Our future work includes:
 - Aurora: Direct comparison with coherent and incoherent scatter radar data(ongoing)
 - Compare results with other techniques for validation/complement

Relevance to PUNCH

PUNCH science objectives: (1) to understand how coronal structures become the ambient solar wind; and (2) to understand the dynamic evolution of transient structures in the young solar wind. The PUNCH team tracks CME and CIR evolution, and characterizes cross-scale shock dynamics

OF tracking could not only help PUNCH's science objectives but also help us validate the approach

Backup slides

SuperDARN radars

SuperDARN radars

High frequency coherent scatter radars that measures signals scattered from magnetic field-aligned plasma irregularities in the ionospheric E and F region

- Line-of-sight (LOS) velocity observations obtained by SuperDARN radars are projections of the ionospheric plasma velocity along radar beam directions [e.g., *Greenwald et al.*, 1995; *Chisham et al.*, 2007]
- The radars scan over azimuth sectors of 16 to 20 beams separated by about 3.25°, typically
 observing along a single direction for an integration period of 3 s to 6 s. Temporal
 resolution of a full scan: 1-2 minutes
- LOS observations from a single site are insufficient to make this determination since the projections do not provide any information on the velocity components perpendicular to the lines of sight

SuperDARN radars - Velocity vectors

1. Old method: Spherical harmonic Fit (SHF)

- The SuperDARN measurements are used to determine a solution for the distribution of electrostatic potential, Φ, expressed as a series expansion in spherical harmonics
- In addition, data from a statistical model constrains the solution in regions of no data coverage [*Ruohoniemi and Baker*, 1998]
- In this approach, the plasma velocities are considered divergence free
- The level of detail that can be represented depends on the order of the fit
- This imposes a limit on the minimum size of features that will be represented in the results
- Often the LOS observations exhibit more detail than can be represented in the SHF patterns, producing great discrepancies

Figure: Velocity vectors obtained for (a) overlapping radar echoes and (b) SHF technique

SuperDARN radars - Velocity vectors

2. New method: Local Divergence-Free Fitting (LDFF)

Figure: Sequence of all sky imager composites with convection velocities superposed. Imagers the three Alaska Poker Flat, Toolik Lake, Kaktovik, are shown. Frames are separated 2 min, starting with UT

- The Local Divergence Free Fitting (LDFF) technique can be used to produce convection maps with a spatial resolution determined by the resolution of the observations rather than an arbitrary fit order
- It is limited by the resolution of the observations and the observed noise level
- The LDFF technique allows us to identify and analyze the motion of small and mesoscale (100s km) structures

OF technique applications to STEREO – Radial component

