

The State of CME Research

Where do we stand and how could PUNCH help

Angelos Vourlidas LASCO, SECCHI, WISPR/, oloHI Project Scientist JHUAPL angelos.vourlidas@jhuapl.edu

Covered Topics

• The State of CME Research

- 'paradigm' shifts in understanding CMEs

What is still missing?
 Key knowledge gaps

- Where do we go next?
 - Where PUNCH can help and...
 - where it cannot

'Paradigm Shift': Coronal Mass Ejections Fifty years of CME observations

1980s: Halo CMEs

1971: Discovery! 1980s: CMEs in the inner corona

2007- : CMEs in 3D

1996- : CMEs across 2 cycles & over the full corona

CME Properties

Population physical properties are well understood

CME Research in the STEREO Era (2007-) Major Breakthroughs

- 3D Reconstructions of CMEs, shocks, and their directions
- Imaging of CMEs and CIRs in the IP.
- CMEs are Magnetic Flux Ropes
- Direct comparison of imaging (CMEs) and in-situ (ICMEs).
- Discovery of rotations, deflections, both in low corona and IP
- Clarification of shock-SEP relation, EVEN in low corona.
- Discovery of the hot flux-rope core of CMEs.

'Paradigm Shift': CME Structure

CMEs contain Magnetic Flux Ropes (as theory predicts)

'Paradigm Shift': Imaging the Solar Wind

Heliospheric imaging offers a new way to study the inner heliosphere

Imaging of SIRs

Sheeley+ 2008

Solar Driver Forecasting Status

A way to identify gaps in our understanding of CMEs

TABLE 1 | Forecasting status of key quantities used to assess the Geo-effectiveness of the main solar drivers of space weather.

Quantity	Observational inputs	Forecasting status	Choke points
CME/shock			
Direction (Hit/Miss)	Source region / flare location, 3D CME reconstruction	85%*	Deflection in low corona, IP evolution
Time-of-arrival	Speed in corona or inner heliosphere	$9.8 \pm 2 h^a$	IP propagation, CME/shock front shape at 1 AU
Speed-on-arrival	Speed in corona or inner heliosphere	±200 km/s*	Same as above
Density	CME mass	Unknown	IP propagation, small-scale structure of CME/shock sheath
Magnetic configuration	Radio emission, 3D CME reconstruction, coronal magn. field extrapolations	\sim 30 min (L1 <i>in-situ</i> meas.)	Coronal origin, evolution ($< 3 \text{ Rs}$), IP propagation

Vourlidas 2020, Vourlidas+ 2019

CME Structure

Remote Sensing and In Situ Comparisons

Table 5	.1:	EFR	Model	Parameters

CME	Lon ϕ	Lat θ	Rot ξ	Major	Minor	Y_o
	(deg)	(deg)	(deg)	(AU)	(AU)	(AU)
1	206	-44	108	0.35	0.33	0.34
2	119	-66	12	0.30	0.29	0.23
3	358	-5	28	0.02	0.01	0.02
4	41	-14	174	0.10	0.09	0.05
5	19	-31	16	0.36	0.08	-0.27
6	179	-69	145	0.20	0.14	0.03
7	63	-61	384	0.37	0.36	0.14
8	1	7	89	0.04	0.01	0.01
9	273	-18	0	0.09	0.08	-0.08

 Table 5.2: GCS Model Parameters

CME	Η	Lon	Lat	Rot	Radius	Width
	$({ m R}_{\odot})$	(deg)	(deg)	(deg)	(AU)	(AU)
1	1.66	26	-3	-35	0.41	0.60
2	1.01	8	-2	12	0.32	0.50
3	1.10	-10	8	-50	0.28	0.49
4	1.22	-17	6	-33	0.32	0.41
5	1.31	-21	17	-43	0.46	0.59
6	1.33	13	-29	-55	0.42	0.62
7	1.00	2	3	26	0.36	0.51
8	1.06	-20	3	-11	0.40	0.59
9	1.12	-21	-3	-16	0.29	0.50

Colaninno (2012) <u>PhD Thesis</u> also Nieves-Chinchilla+ 2012,2013; Wood+ 2017

ICME Rotations and Deflections

- 3D height-time & orientation measurements.
- In COR2 and in-situ reconstructions.
- Source region geometry from EUV.
- Deflection based on upstream solar wind structure (from MHD sims).

$$\Delta \phi = \Omega \left(rac{1}{V_{
m FR}} - rac{1}{V_{
m SW}}
ight) \cdot 1 {
m AU}$$

Isavnin+ 2014

What are we missing?

Top-level knowledge gaps in 2020

- The interaction challenge
 - CME-CME
 - CME-Solar Wind
 - CME-Magnetic Field

The inner coror a challenge
What reprint poens between ~1.3 and 3-4 Rs?

- The physics challenge
 - Energy budgets and force-balance

(APL,

Force Balance

CME IP Propagation

Possible PUNCH contributions

Research Issue	How
CME-CME interactions	Detailed kinematics (high cadence); structure disambiguation (polarization); 360° FOV
CME Kinematics > 50 Rs	High SNR; 360° FOV
CME Sub-structure	High SNR; polarization; +WISPR/SoloHI
non-'self-similar' expansion	Polarization; high SNR; 360° FOV; +WISPR/SoloHI
Pileup effects	WFI/NFI FOV overlap; high SNR
(Estimate) of CME B-field	High SNR; polarization; +Forward models

e.g. Vourlidas & Howard (2006)

Conclusion/Discussion

PUNCH's impact on CME research

- PUNCH could lead to important insights into
 - CME kinematics, morphology, interactions with ambient structures
- PUNCH could provide important constraints/inputs for
 - CME propagation and inner heliosphere models,
 - data assimilation & ensemble modeling development
 - Space weather forecasting improvements
- But...attention is needed for
 - Dealing with the effects of F-corona polarization and high-lat aurora on data quality
 - Dealing with the limitations of the single (along the Sun-Earth line) viewpoint (primarily for SWx studies).
 - Developing/optimizing CME models (e.g. FIDO, 3DCORE, etc.) for the PUNCH data
 - Accounting for the wide inner field cutoff (ie. In mass and kinematic studies).
 - Establishing coordinated observing plans with PSP and Solo (and hopefully, Proba-3).

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

The Corona 24x7!

Recognition of CMEs as the main SWx driver Recognition of the minute-hour-daily coronal variability

25 years of SOHO Coronagraph Observations