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Introduction

Solar irradiance forecasting is of great importance for the space weather community, particu-

larly for applications in reentry prediction, satellite collision avoidance, and characterizing solar-

terrestrial climatology. Proxies for solar irradiance are routinely used in atmospheric modeling,

though recent modeling developments have begun incorporating the outputs of empirical mod-

els of solar spectra in numerous wavelength bins, such as the Flare Irradiance Spectral Model 2,

which models solar spectral irradiance between 0.1-190 nm [1]. Improvements to these mod-

eling paradigms may be achieved through the leveraging of well-grounded statistical techniques,

particularly those of a Bayesian character. To this end, we present a preliminary application of

Generalized Additive Models (GAMs) [2] used in conjunction with multiple linear regression to

model solar spectral irradiance as a function of Day-of-the-Year and the solar indices Lyman-α,
F10.7, and sunspot number (R). The GAM is trained on Solar Cycle 22 and the ascending phase

of Solar Cycle 23 using FISM2 data, and multiple linear regression on residuals is performed on

the descending phase of Solar Cycle 23 using TIMED/SEE data. The results are presented for

solar irradiance at 425 Å for the ascending phase of Solar Cycle 24, and are generalizable to any

wavelength.

Methodology

Solar irradiance data outputs from FISM2 and measurements from TIMED/SEE are obtained from

LISIRD, while solar indices are obtained from NASA’s OMNIWeb Data Explorer. These data are

processed before the fitting of a GAM and the application of multiple linear regression.

Resampling: FISM2 daily-averaged solar spectral irradiance is resampled to the hourly

resolution of NASA OMNIWeb solar indices Lyman-α, F10.7, and R.

Data Segmentation: FISM2 and solar index data is segmented into three temporal regions: (1)

A training region for initial model fitting, (2) a training region for modeling residuals, and (3) a

test region for assessing performance of the final model.

Initial Model Fitting: In the first training region, a GAM is fit between solar indices and FISM2

irradiances. This model we term Yinitial(x̄), where x̄ is a vector of solar indices.

Residuals Regression Analysis: In the second training region, multiple linear regression is

performed between the differences between outputs of Yinitial(x̄) and SEE irradiances, and

solar indices, generating a model for residuals δ(x̄).
Final Model Prediction: In the test region, the final model Yfinal(x̄) = Yinitial(x̄) + δ(x̄) is driven
by historical solar index data to model the ascending phase of Solar Cycle 24.

Statistical Approach in Detail

Generalized linear models (GAMs) are a mature statistical approach for modeling complex non-

linear relationships. The particular functional form used in this work is contrasted with conven-

tional linear models below:

Y =
∑

βiXi︸ ︷︷ ︸
conventional linear model

vs. Y =
∑ 1D spline︷ ︸︸ ︷

hi(Xi)︸ ︷︷ ︸
generalized additive model

The response variable Y , i.e., the irradiance spectra at fixed wavelengths, is modeled as a sum

of (non-linear) spline functions that are independently regularized. Note that higher-order mul-

tiplicative interactions between the spectra and the predictors can also be captured within this

framework with the inclusion of cross terms hij(XiXj).
The advantages of the proposed approach are (1) flexibility, a wide class of functions can be

approximated using GAMs, thereby enabling the learning of complex dependencies, (2) explain-

ability, by analyzing the marginal functions hi(Xi), contributions to the response from each of

the covariates can be precisely quantified and (3) generalizability, the parametric nature of the

model make it amenable to principled error analysis and confidence bound estimation.

Initial Model Fitting

Solar indices Lyman-α, F10.7, and sunspot number (R) were specifically selected by reason of their
serving as reasonable proxies for the solar chromosphere, corona, and photosphere, respectively.

(a) Solar indices.

(b) Residuals between Yinitial and FISM2 during the

descending phase of Solar Cycle 23 (cyan), and the modeled

residuals found via δ(x̄) (blue).

Figure 1. Solar indices for Solar Cycle 22 and the ascending phase of Solar Cycle 23 (left), and residuals between

the initial model fit and FISM2 data (right).

A GAM (Yinitial) linear in spline terms for each solar index was fit for the FISM2 data. Residuals

of Yinitial were regressed against solar indices x̄ during the declining phase of Solar Cycle 23.

Multiple linear regression was then performed between Yinitial residuals with respect to FISM2

data and x̄ during the declining phase of Solar Cycle 23. A linear model was constructed for the

residuals, due to their fairly stationary behavior (Figure 1b). For the wavelength considered, the

final model Yfinal(x̄) is then found as Yfinal(x̄) = Yinitial(x̄) + δ(x̄).

Results

Predictions for the Ascending Phase of Solar Cycle 24
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Figure 2. GAM results for the training period (yellow region) and the test period (green). The leftmost unshaded

white region comprises of FISM2 data only, which was used to fit Yinitial. The yellow region corresponds to where

δ(x̄) was determined, and the green region where Yfinal(x̄) was applied.

Despite the initial fitting of Yinitial on only 1.5 solar cycles of FISM2 data, and the modeling

of residuals on only the declining phase of a single solar cycle, the performance of the final

model Yfinal(x̄) during the ascending phase of Solar Cycle 24 (using historical solar indices) is

respectable. Percent error between Yfinal and TIMED/SEE was consistently lower than FISM2,

with an average value during the ascending phase of Solar Cycle 24 of ∼ 7.9%, compared to

that of ∼ 17% for FISM2. This is largely attributable to FISM2 consistently overestimating

TIMED/SEE in the chosen band, which was accounted for in Yfinal by the fitting of δ.

Final Model Residuals

We observed residuals clustered around zero, but also growing in variance as a function of time

progressing through the test set.

(a) Residuals between Yfinal and TIMED/SEE for final

predictions and the associated 95% confidence

intervals the bottom of Figure 2.
(b) Distribution of residuals between Yfinal and
TIMED/SEE.

Figure 3. Behavior of the residuals between Yfinal and TIMED/SEE for the test set (ascending phase of Solar Cycle

24).

The distribution of residuals was leptokurtic, with a kurtosis of ∼ 3.06%. The distribution
additionally was left-skewed, with a skew of approximately −0.83, indicating that when deviating,
Yfinal was more likely to overestimate than underestimate SEE. The residuals for Yfinal as well as
its associated confidence intervals all demonstrated a downward linear trend. The parameters of

each fit to the residuals are in Table 1 below.

Case Slope Intercept

Yfinal (upper) −3.962 × 10−13 5.056 × 10−4

Yfinal −1.051 × 10−13 1.277 × 10−4

Yfinal (lower) −3.957 × 10−13 4.227 × 10−4

Table 1. Fitted parameters (rounded to three decimal places) for linear fits to final residuals for Yfinal.

Conclusions and FutureWork

GAMs are a versatile tool allowing for flexibility in the functional form of models fit to time varying

data. This research demonstrates that combined with multiple regression to determine a correc-

tion term using residuals, they can serve to capture the behavior of solar irradiance well, even if

they are only fit to a subset of historical data. The approach, however, is not without concerns.

The leptokurtic nature of residuals results from model performance being coupled to underly-

ing fitted data - biases are more likely to exert influence when fitting is done with smaller or

arbitrarily-chosen subsets. Bias as a function of wavelength band should also be investigated, as

well as the efficacy of the approach when leveraging outputs from other irradiance models such

as EUVAC/HEUVAC. Additionally, the issue of forecasting model inputs in a statistically robust

manner is vital for operational capability. To this end, future work will involve the evaluation of a

coupled approach involving autoregressive models and Fourier analysis.
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