
Thermospheric Forecasts

• Linear regression used to map DA forcing estimates to 
issued Ap and F10.7

• Mapping used to interpret solar and geomagnetic forecasts
• 3-7 day forecast duration, launched at 6-12 hour cadence

Thermospheric State Estimates

• Geomagnetic forcing (3-6 hour cadence)
• Solar Forcing (6-24 hour cadence)
• Output Fields include density, composition, temperature, 

and winds (lat, LST, alt, 6 hour cadence)

Orbit Average (OA) Densities 

(50-90 satellites)
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Introduction
A significant increase in orbital congestion in low Earth
orbit (LEO) is motivating research into enhanced orbit
prediction and conjunction analysis (CA) capabilities.
In LEO, this includes predictions of satellite drag
perturbations are proportional to the atmospheric
neutral density (ND) which is highly variable and
difficult to predict, degrading the accuracy of orbital
forecasts.

Recently developed data assimilation (DA) techniques
such as Dragster (Pilinski et al., 2016) and IDEA (Sutton
et al., 2018) have the ability to determine atmospheric
model forcing and (in the case of Dragster) density
corrections using physics-based and empirical models.
The results are then most compatible with the
observed satellite drag, effectively making a “model
driver correction” at each time step. Because the
Thermosphere is a strongly forced system, these
drivers are critical to determining the global
distribution of neutral density. The techniques above
use ensembles of atmospheric models to assimilate
satellite drag data and have been shown to
significantly reduce ND specification errors. However,
it is not clear at the present time how existing forecast
of Thermospheric forcing should be correlated with
the corrected drivers estimated by DA techniques. One
approach is to compute the offset between each
estimated forcing parameter and its zero-day forecast
then to apply that offset to the predictions at each
step of the forecast. Another method involves the
linear regression between the zero-day forcing
forecasts and the DA estimates over a moving analysis
window. The results of the regression are then applied
to subsequent forecasts. The latter approach also
results in an estimate of uncertainty in the mapping
parameters between the available forecasts of model
drivers and their DA estimates. This uncertainty can be
used to generate an ensemble of ND forecasts leading
to an estimate of the evolving errors in satellite drag
that are necessary for improved CA.

Thermospheric Data Assimilation

Conclusions
• Dragster is capable of multi-point and multi-source 

assimilation
• Good agreement between drag-based assimilation 

and occultation data
• Ability to accommodate a broad set of temporal 

sampling characteristics is required to 
accommodate existing operational datasets along 
with newly developed observations

• Validation metrics demonstrate performance 
improvements over several other models, including 
current operational DA, esp. at higher altitudes
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Above: Sections of orbits where each satellite
experiences 90% of drag along its orbit. Line shade
indicates amount of drag. Blue corresponds to
validation satellites (not assimilated) and red
corresponds to assimilation satellites.

Issued index underestimates 
storm by ~60 ap units

Estimated index indicates a 
cooler thermosphere during 
storm recovery

Atmospheric Model Manager

(30-90 Ensemble Members)

Dragster Ensemble DA Engine

NRLMSISE-00
(empirical)

TIE-GCM 2.0
(physics-based)

Issued Forcing
Estimated 
Forcing

Solar Occultation Measurements

(see Poster #11)

GNSS-based POD

Initialize ensemble of Q 
members at time tk-1

Forecast state of each 
ensemble member to time tk

Xo à Xk

Estimate error covariance 
from ensemble (Xk) statistics 
and calculate Kalman gain, K

Perform analysis on each 
ensemble member
Xa =Xk+K(Yk-HXk)

Compute ensemble average 
of analysis solutions
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Densities derived from 
Spire CubeSat POD 
shown as an example 
of this data-type 
(Sutton et al. 2021)

• Method developed from occultation processing on
the Lyra instrument on Proba II

• Retrieval integrates the solar disk over reference
atmosphere to find a column density

• See Thiemann et al. 2017 for a full description

Validation

2015 ¼ Orbit Average - Validation Results 2015, SD Logarithmic (Linear), 5 storms with Kp>5+

Dragster HASDM* JB-08 NRLMSISE-00

Swarm-A (450km) 0.115 (0.101) 0.117 (0.133) 0.180 (0.202) 0.267 (0.318)

Swarm-B (515km) 0.198 (0.202) 0.219 (0.295) 0.258 (0.329) 0.340 (0.497)

2016 ¼ Orbit Average - Validation Results 2016, SD Logarithmic (Linear), 1 storm with Kp>5+

Dragster HASDM* JB-08 NRLMSISE-00

Swarm-A (450km) 0.166 (0.164) 0.157 (0.202) 0.236 (0.278) 0.274 (0.413)

Swarm-B (515km) 0.384 (0.871) 0.369 (1.065) 0.425 (0.930) 0.456 (1.563)

2017 ¼ Orbit Average - Validation Results 2017, SD Logarithmic (Linear), 2 storms with Kp>5+

Dragster HASDM* JB-08 NRLMSISE-00

Swarm-A (450km) 0.176 (0.160) 0.188 (0.220) 0.259 (0.303) 0.278 (0.442)

Swarm-B (515km) 0.377 (0.616) 0.389 (0.724) 0.440 (0.740) 0.437 (1.227)

447 km 6-hour smoothed densities
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Lower Left: Tables showing model 
performance metrics. Both linear and 
log standard deviation metrics are 
shown. Log metrics use Swarm 
density observations (O) and model-
computed densities (C):

• Green indicates best performance
(lower value=better)

• High values during 2017 are a result
of increased Swarm density noise
above 500 km

• Dragster input data was similar to
that of HASDM for this time

instrumental noise in the observations. The mean and SD of the
density ratios, due to their distribution, are computed in Log
space (Sutton, 2018):
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where N is the total number of observations. The correlation
coefficients R are also computed. The correlation coefficient
is independent of model bias and R2 represents the fraction
of observed variance captured by the model. Mean, SD and

correlation are computed for each storm, for each separate
phase as well as for the entire interval. These metrics are
the same as in (Bruinsma et al., 2018) but applied to the de-
fined storm intervals only in order to isolate the performance
of the geomagnetic storm algorithm of the models.

A second assessment, and updated metrics compared with
(Bruinsma et al., 2018), concerns the amplitude and timing of
the maximum density peak considering the entire time interval.
The absolute relative amplitude error is expressed as a percent-
age of the measured maximum, and the timing of the peak with
respect to the observed peak is expressed in hours, an example
of which is shown in Figure 3. However, these two quantities
cannot always be determined unambiguously, for example
when two peaks are present, or a broad peak is present. For that

Fig. 4. The mean l and the standard deviation r of the 24 mean density ratios, per phase (black) and overall (red), using data from three
satellites.

Fig. 5. The mean l and the standard deviation r of the 24 standard deviations of the density ratios (SD; %), per phase (black) and overall (red),
using data from three satellites.
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Below: Dragster validation using GOES-SUVI occultations including a single 
altitude profile (left) and dawn density comparisons at a 225 km altitude.

Temporal sampling of potential Dragster data sources. The DA
approach is to iteratively analyze data in a 3-6 day moving
window.

Dragster DA

Left: Time series of ESA Swarm densities compared 
with two assimilative models. 

Existing Capability In Development & Testing

Dragster DA flowdiagram

Plots: Swarm-A 
orbital forecast 
compared with 

measured 
positions

GOES-SUVI @ 225 km

GOES-SUVI @ 225 km

DA

NRLMSISE-00

*HASDM is the DoD operational High Accuracy Satellite Drag Model
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