PREVIOUS FEWS NET CONTRIBUTIONS TO GAR

Greg Husak, Harikishan Jiyanthi, Frank Davenport

Basic Methodology

Identify drought metric
 Calibrate metric to observed losses
 Build empirical loss exceedance curve
 Run simulations
 Generate theoretical loss exceedance curve curve

Basic Methodology

Identify Drought Metric

> Calibrate Metric to Observed Losses

> > Run Meteorological Simulations

> > > Generate Loss Exceedance Curve

Identify Drought Metric

- Standardized Precipitation Index
- Crop Model (Water Requirement Satisfaction Index)
- Standardized Precipitation
 Evapotranspiration Index (SPEI)
- Vegetation Health (NDVI)
- Soil Moisture

Drought Metric Examples

October to Present SPI 10°S ы В ŝ 50°E

-1.5 -1.25

-1

-0.75

-0.5

0.5

0.75

1

1.25

1.5

Soil Moisture Rank 2016 -10 9-6 4 30°B

Drought Metric Examples

Calibrate Metric to Observed Losses

- Requires loss data for multiple years over multiple events
- Build statistical relationship between drought indicator and losses
- Relationship varies across countries and within countries
 - Finest possible truth data
 - Logical spatial monitoring zones

Run Simulations

- Generate simulated seasons using a bootstrap approach
- Use simulations to calculate metric for large number of years
- Important to maintain spatial and temporal relationships

Generate Loss Exceedance Curve

- Convert test statistics to losses
- Use this to identify the
 - Probability of specific loss amounts
 - Average annual loss
 - Loss associated with 1-in-n event
- Example: Maize
 Loss for Malawi

