

Assessing Agricultural Drought Risk

Jürgen Vogt and Hugo Carrao

European Commission Joint Research Centre (JRC) Disaster Risk Management Unit juergen.vogt@ec.europa.eu

Risk =

Hazard

Х

Exposure

Likelihood of drought impact.

Probability of exceeding a drought event with a certain severity. Amount of population and assets (e.g., crops, livestock) in regions where the probability of drought occurrence is not null. Vulnerability

Х

Propensity of individuals or communities to suffer adverse effects when impacted by a drought event.

Scoping Meeting on Agricultural Risk Assessment, 7-9 Feb. 2017, Boulder

Drought Hazard:

- Duration
- Intensity (total deficit divided by duration)
- Severity (accumulated deficit for entire event)
- Timing! \rightarrow growing season, phenology

Key Variables:

- Precipitation (rainfall, snow)
- Evapotranspiration (temperature, wind, radiation, ...)
- Soil moisture
- Vegetation condition (e.g., fAPAR, NDVI, ...)?

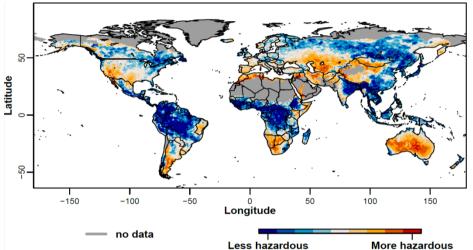
Drought Exposure:

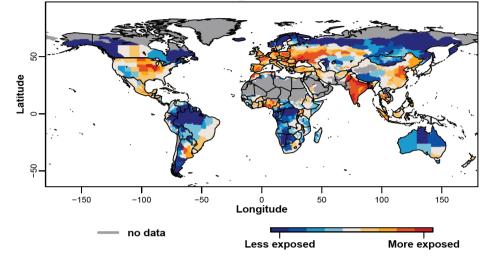
- Presence of agricultural land
 - Rainfed
 - Irrigated
 - by crop type?
- Presence of livestock
 - Grazing
 - Fodder crops
 - Stocking density

Assessment of Drought Hazard and Risk

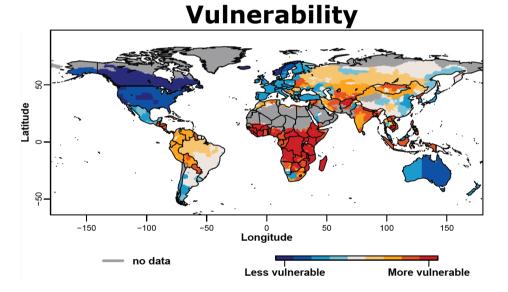
Drought Vulnerability:

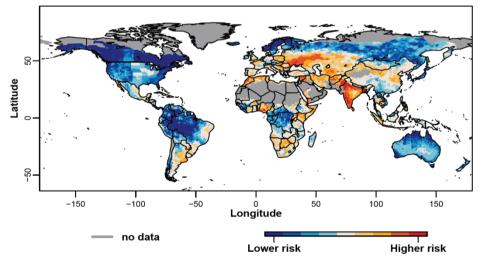
- Social
 - Rural population (% of total population)
 - Improved water source (% of rural population)
 - Education level (Literacy rate in % of people aged 15 and above)
 - Population aged 15-64 (% of total population)
 - Investment in Disaster Prevention & Preparedness (US\$/Year/capita)
- Economic
 - Agricultural % of GDP
 - Poverty headcount ratio at \$1.25 a day (\rightarrow dependency on agriculture)
 - Access to international food markets
 - GDP per capita (current US\$)
- Infrastructural
 - Agricultural irrigated land (% of total agricultural land)
 - % of retained renewable water (reservoirs)
 - Access to and sustainability of groundwater resources
 - Accessibility (e.g., road density, distance to nearest center)
 - Use of drought resistant crop types and/or varieties
 - Use of Fertilizer


Resolution
Availability
Accuracy/
Confidence



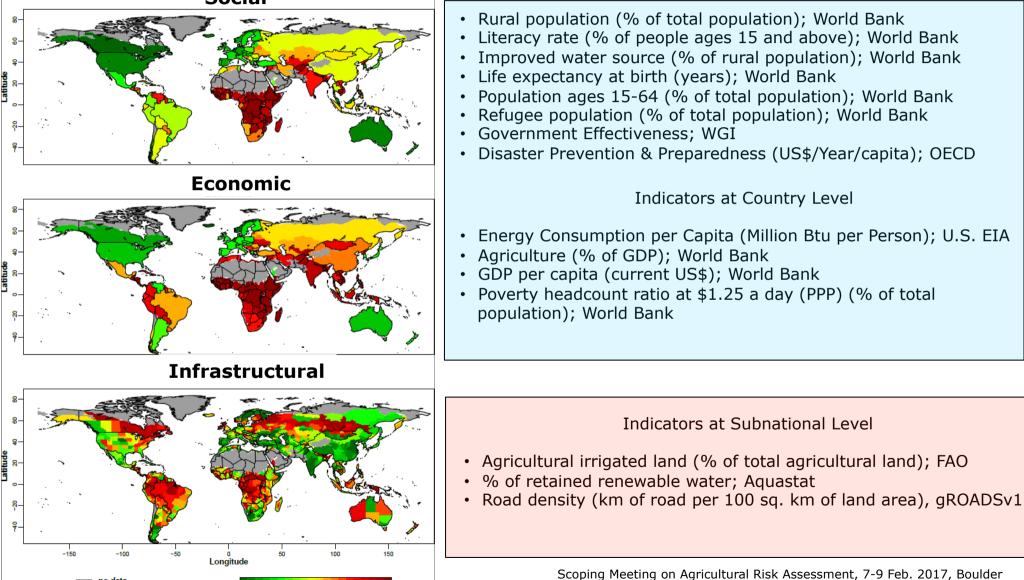
Example of GDO Drought Risk Evaluation


Hazard



Risk

Scoping Meeting on Agricultural Risk Assessment, 7-9 Feb. 2017, Boulder



no data

Lower

Higher

Carrão, H., Naumann, G., Barbosa, P. (2016). Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108-124.

Naumann, G., Barbosa, P., Garrote, L., Iglesias, A., Vogt, J. (2014). Exploring drought vulnerability in Africa: an indicator based analysis to be used in early warning systems. Hydrology and Earth System Sciences, 18, 1591–1604.